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ABSTRACT

Surveys conducted by human interviewers are one of the prin-
cipal means of gathering data from all over the world, but the
quality of this data can be threatened by interviewer fabri-
cation. In this paper, we investigate a new approach to de-
tecting interviewer fabrication automatically. We instrument
electronic data collection software to record logs of low-level
behavioral data and show that supervised classification, when
applied to features extracted from these logs, can identify in-
terviewer fabrication with an accuracy of up to 96%. We
show that even when interviewers know that our approach
is being used, have some knowledge of how it works, and
are incentivized to avoid detection, it can still achieve an ac-
curacy of 86%. We also demonstrate the robustness of our
approach to a moderate amount of label noise and provide
practical recommendations, based on empirical evidence, on
how much data is needed for our approach to be effective.
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INTRODUCTION

Surveys conducted by human interviewers are widespread.
They are used in many contexts, including—to name a few
examples—censuses, academic studies, clinical trials, and
vaccination drives. They are especially important in the
world’s least developed countries, where 72% of people live
in rural areas [42] and 41% of adults are illiterate [43]. In
these countries, surveys may offer the only way to gather crit-
ical health and economic data that is needed to make informed
resource allocation decisions.
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Data quality is a major concern for any survey organization.
One pernicious data quality problem is interviewer data fab-
rication, also known as curbstoning. Interviewers may fab-
ricate data because they cannot reach some households, are
uncomfortable asking sensitive questions, or get paid based
on the number of surveys completed. Curbstoning has been
discovered and reported in several surveys [6, 32, 38], and
an “epidemic of suspected interview falsification” almost de-
railed at least one large epidemiological study [41]. In one
survey from the United States Census Bureau, at least 6.5%
of interviewers were found to be falsifying at least some of
their data [38], and in another survey, 13% of interviewers
admitted to fabricating at least part of an interview—despite
being supervised in a telephone call center [28]. Such fabri-
cation threatens the ability of decision-makers to use survey
data effectively.

Recently, there has been an increase in the amount of data
being collected electronically, either on laptops [1, 12] or on
PDAs and mobile phones [15, 16, 21, 33, 34, 36]. Using these
devices for data collection has been shown to improve effi-
ciency [5, 23, 30]. We argue here that using them provides an
additional advantage: it can make it easier to detect curbston-
ing. When interviewers conduct a survey with an electronic
device, they leave a detailed trace of behavorial data, such as
when they select and change answers, move between ques-
tions, and scroll. These traces, if recorded, may provide a
strong signal indicating whether data is being fabricated. For
example, curbstoners might change their answers more fre-
quently or fill out data more quickly than interviewers who
are collecting real data.

In this paper, we evaluate the potential of using this behav-
ioral data to identify curbstoning. We instrument widely-used
data collection software to record detailed event logs of low-
level behavioral data, and then, using features extracted from
these logs, we train a classifier on labeled data and use it to
make predictions on new data.

We show that our approach can accurately identify curbston-
ing. On independent test data, our classifier achieved an ac-
curacy of 96%, as compared to 77% without the behavioral
data. We also show that our approach can robustly identify
curbstoning. In realistic scenarios, interviewers who fabricate
data have an incentive not to get caught and might learn how



their behavioral data is being recorded and monitored. We
show that even when interviewers know that our approach is
being used, have some knowledge of how it works, and are
incentivized to avoid detection, it can detect curbstoning with
an accuracy of 86%.

We also address two practical concerns facing a survey orga-
nization that wishes to implement our approach. First, we
measure the sensitivity of our approach to label noise and
show that the accuracy does not decrease very much for mod-
erate (i.e., 10%) levels of label noise. Second, we measure the
sensitivity of our approach to the size of the training set and
use the results to provide recommendations on the training set
size needed.

The rest of this paper is organized as follows. First, we ex-
plain how our contributions fit within related work in survey
methodology and human—computer interaction. Second, we
describe the software that we used for data collection and
our methodology for recording behavioral data and extracting
features from it. Third, we describe the design of the exper-
iment that gave us ground-truth labels and that allowed us to
assess the robustness of our approach to interviewer knowl-
edge and incentive. Fourth, we describe the results of running
our classifier on the data from our study. We conclude with
a summary, discussion of the practical feasibility of our ap-
proach, and directions for future work.

RELATED WORK
Our work fits within two research areas: survey methodol-
ogy on detecting curbstoning and human—computer interac-
tion on automatically learning from behavioral data. We de-
scribe each in turn.

Detecting curbstoning

Survey methodologists began their formal study of curbston-
ing in 1945 with a seminal paper by Crespi [14]. In this paper,
Crespi proposed several reasons that interviewers might fabri-
cate data, including long questionnaires, complex or intrusive
questions, unreasonable expectations, and hard to reach sub-
jects. He suggested that survey organizations make careful
survey design and management decisions to make cheating
unlikely or unattractive. Just how to make these decisions
was the subject of much of the early work on curbstoning [2,
17]. Our work complements this important area of research
by providing automated support to detect curbstoning when it
does occur.

In the late 1980s, researchers started investigating the poten-
tial of using the survey data itself—in addition to high-level
behavioral data like completion time—to detect curbstoning.
These data-driven approaches provide important insight into
what may characterize fabricated data, including a bad fit to
“Benford’s Law” [6, 11, 27, 35, 39], missing contact infor-
mation [24, 29, 32, 41], fast interviews [8, 29, 31, 32], and
low data variance [6, 26, 35, 39]. Unlike our work, however,
these studies do not use automatic approaches like supervised
classification to identify fabricated data, nor do they validate
their hypotheses using independent data sets.

More recently, researchers have begun to investigate the abil-
ity of supervised classification to predict fabrication or other

data quality problems [4, 10, 31]. These papers show the
promise of the approach, but, unlike our work, they do not in-
vestigate the potential of low-level behavioral data to improve
performance.

Automatically learning from behavioral data

Recorded logs of behavioral data have long been used as a
tool by researchers in human—computer interaction. Typi-
cally, these logs are used to understand the the usability of in-
terfaces and to inform design choices (see [22] for a survey).
Collecting behavioral data from interviewers and respondents
in surveys (without using supervised classification to identify
fabricated data) has also been proposed [13, 20, 40].

More recently, researchers have explored how supervised
classification can be applied to features extracted from logs
of behavioral data to make automatic inferences regarding
users, such as whether they have pointing problems [25] or
what their level of skill in using a software application is [18].
This approach has also been applied to detect data quality
problems. Rzeszotarski and Kittur [37] show that supervised
classification applied to recorded behavioral data could accu-
rately identify low-quality data submitted by crowd-workers
on Mechanical Turk.

Our work builds on the growing body of literature showing
the promise of supervised classification on user-trace logs.
We demonstrate the feasibility of this approach in a new ap-
plication: detecting interviewer fabrication in surveys col-
lected on electronic devices. This application is similar to
Rzeszotarski and Kittur’s in that it concerns data quality, but
the context of our work—a live interviewer using a handheld
device—differs from the context of theirs—a worker com-
pleting a task on Mechanical Turk. In a live interview, for
example, there is an extra layer of interaction: instead of di-
rectly inputting data, the interviewer first interacts with the re-
spondent and then enters the data. Live interviewers are also
typically more focused than workers on Mechanical Turk,
who may perform multiple tasks at once or leave a task and
come back to it. And finally, the method of interaction dif-
fers: in our context, interviewers use their thumbs on a touch-
screen device, whereas workers on Mechanical Turk can use
a mouse, keyboard, and operations like copy-paste.

Apart from these differences, we note that one of our pri-
mary contributions is to show that this approach can detect
fabrication even when participants know that it is being used,
have some knowledge of how it works, and are incentivized
to avoid detection.

SOFTWARE TOOLS AND INSTRUMENTATION

In this section, we describe the software used by interviewers
in our study, called Open Data Kit (ODK) Collect [21], how
we modified this software to record logs of behavioral data,
and how we extracted features from these logs.

Open Data Kit Collect

ODK Collect, which runs on Android devices, allows users
to record structured data using the touch screen of their de-
vice. In ODK Collect, surveys are specified by an XML form
that provides the question text, response types, and branching
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Figure 1. Screenshots from a survey on ODK Collect, showing (a) a note prompt, (b) a categorical question prompt, (c) a numeric question prompt,

and (d) a free text question prompt.

Parameters

Event type Description

answer selected ~ An answer is selected or changed for a categorical question prompt.
next A prompt is reached from a forward (left) swipe.

previous A prompt is reached from a backward (right) swipe.

scroll The user scrolls up or down on a prompt.

text changed The text is changed for a numeric or free text question prompt.

response selected

amount scrolled in pixels (direction indicated by sign)
answer text prior to change, answer text after change

Table 1.
instance identifier, and a prompt identifier.

logic of the survey. Each interview that a user conducts cor-
responds to one instance of the form. Each form consists of
multiple prompts, which can be read-only note prompts or in-
teractive question prompts. To move through the survey, users
swipe the touch screen left (forwards) or right (backwards).
To choose a response for a categorical question, users select
the desired response with their finger. To enter a numeric
or free text response, they use the keyboard on their phone
(either a physical keyboard, if one exists, or the “soft” key-
board that appears on the touch screen.) If the entire prompt
is too big to fit in the phone’s screen, users can scroll through
the prompt vertically. Figure 1 shows screenshots from four
different prompts from the survey that we used for the study
(described shortly).

Recording logs of behavioral data

To collect behavioral data on how interviewers interacted
with ODK Collect, we modified the software to record de-
tailed event logs. Each entry consisted of an event type, a
millisecond-precision timestamp, an instance identifier, and
a prompt identifier—along with various parameters specific
to the event type. The possible event types were answer se-
lected, next, previous, scroll, and text changed. Table 1 lists
the event types, their semantics, and parameters. The logs
were stored in SQLite databases on participants’ phones.

Feature extraction

From these logs, we extracted a rich set of features. First, for
each prompt, we extracted a set of prompt-level features that
pertained only to that prompt. A description of some of these
features is given in Table 2.

Second, we used the log files and the values of the prompt-
level features to extract a set of instance-level features that
pertained to the entire interview. A description of some of

Log event types. In addition to the parameters listed in this table, each event was also tagged with a millisecond-precision timestamp, an

these features is given in Table 3. These features were ei-
ther statistical aggregations of the prompt-level features, such
as total-answer-time, or features extracted directly from the
logs that involved more than one prompt at once, such as
times-old-response-checked.

Third, we computed a set of interviewer-normalized features
based on the prompt- and instance-level feature. The purpose
of computing these features was to control for interviewer-
level trends in feature values. (For example, one interviewer’s
phone might have a larger screen size than another’s, and
therefore what might be a large amount of scrolling for one
interviewer might not be for another.) For each interviewer ¢,
numeric feature j, and instance = completed by i, we com-
puted (1) the difference and (2) the squared difference, in
standard deviations, between the value of feature j for in-
stance x and the mean value of feature j over all of inter-
viewer ¢’s instances.

We chose some of these features based on prior work
from survey methodologists that proposed characteristics that
might be exhibited by fabricated data. For example, the
features measuring timing were inspired by the idea that
curbstoners might complete interviews more quickly [8, 29,
31, 32], and the features num-conditional and total-time-
conditional were inspired by the idea that curbstoners might
choose short paths through the survey [6, 24]. Other features
were not inspired by prior work, but seemed potentially use-
ful. Our philosophy was to be inclusive about the features we
extracted and then to rely on the feature selection built into
our learning algorithm, random forest, to hone in on the most
important features.

The survey that we used contained 52 prompts. For each
prompt, there were between 1 and 6 prompt-level features,



response: the actual value of the response for the prompt, if it was a question prompt.
ord: for ordinal question prompts, a positive integer indicating the response’s position in the order.

time: the total number of milliseconds spent on the prompt.

delay-to-first-edit: the number of milliseconds between when the prompt was first swiped to and when the the first edit was made.
num-contiguous-edits: the number of times the user re-edited the response to a question prompt contiguously without changing prompts in

between.

num-non-contiguous-edits: the number of times the user edited the response to a question prompt immediately after swiping to the prompt.

Table 2. A selection of prompt-level features extracted from the logs.

total-time: the value of the last timestamp seen in the logs for the instance minus the value of the first timestamp seen in the logs for the instance.
Because the set of possible timestamps includes timestamps from re-editing sessions, the value of this feature could be much higher than the actual

time spent actively editing the form.

(total, median, min)-answer-time: the sum (median, minimum) of the time features for all question and note prompts.
(total, median, min)-delay-to-first-edit: the sum (median, minimum) of delay-to-first-edit features for all question prompts that were edited

at least once.

mean-string-length: the mean length of all non-empty free text responses.

note-time: the total time in milliseconds spent on note prompts.

num-conditional: how many of the conditionally-appearing question prompts were answered.
total-time-conditional: the total time spent on conditionally-appearing question prompts.
(mean, max)-select-one-contiguous-edits: the mean (max) of the num-contiguous-edits feature values for the categorical question prompts

that were edited at least once.

(mean, max)-select-one-non-contiguous-edits: the mean (max) of the num-non-contiguous-edits feature values for the categorical ques-

tion prompts that were edited at least once.

num-swipes: the total number of forward and backward swipes on the form.

num-previous: the number of backward swipes on the form.

total-scrolled: the total number of pixels scrolled up and down while the form was being filled out.
times-old-response-checked: the number of times the following event happened: when filling out the response to a question, the user moved
backward some number of questions and then forward to the original question, without changing any response along the way.

Table 3. A selection of instance-level features extracted from the logs.

giving a total of 209 prompt-level features for each instance.
There were also a total of 22 instance-level features and 410
interviewer-normalized features. Thus, for each instance of
the survey, we extracted a total of 641 features.'

EXPERIMENT DESIGN AND DATA COLLECTION

In this section, we describe how we obtained labeled data.
First, we describe the survey itself; second, we detail our ex-
periment protocol; third, we summarize the data that we col-
lected; and fourth, we provide an empirical validation that
part of our protocol worked as designed.

The survey

We created a survey specifically for our study. We called the
survey the Study Habits survey. It contained 44 questions and
was designed to take between 5 and 10 minutes to complete.
To be eligible to take it, a respondent had to be a university
student and be between ages 18 and 25.

The survey started by asking for details about the respon-
dent’s major. It then asked for details about the hardest class
she had taken in the last year, including its name, when she
took it, whether she liked it, and how many hours a week she
spent on it. Next, it asked how much time she spent on obliga-
tions outside of school, including paid work, volunteer work,
research, and family. Following that, it asked whether and
how much she would be willing to pay for a major she was
interested in if it cost extra. Then it asked a series of ques-
tions to determine how often she sought help in her studies

'Not surprisingly, these features were far from independent. Ac-
cording to a Principal Components Analysis (PCA), 99% of the vari-
ation of our data was contained in a space having dimension 305.

from faculty, TAs, tutors, and advisors. It concluded by ask-
ing whether she believed that she studied more than the av-
erage student, procrastinated more than the average student,
and had more obligations outside of school than the average
student. (The full survey can be found in Appendix A of [3].)

We considered several factors in the design of the Study
Habits survey. First, we chose our questions in consulta-
tion with the undergraduate advisors in our department and
communicated our collaboration verbally and in writing to
the interviewers and respondents. We made this choice to en-
courage interviewers and respondents to take the survey as
seriously as they would take most surveys.

Second, we had the questions require a variety of answer
types—including 27 categorical questions, 7 numeric ques-
tions, and 10 free text questions. We also included a mix-
ture of questions requiring little thought, like “What is your
sex?” and questions requiring more thought, like “If tuition
was more expensive for certain majors, would that stop you
from pursuing a more costly major?” We made these choices
to make our survey representative of many real surveys.

Third, we incorporated a rich branching logic. Seventeen of
the questions were conditional; that is, they were asked only
if an earlier question was answered in a particular way. (For
example, respondents were asked what their major was only if
they had indicated earlier that they had decided on a major.)
We made this choice because we believed that curbstoners
would choose answers so that fewer of the conditional ques-
tions appeared [6, 24].



Label Description Explanation When Collected  Data Sets
real real Real interviews between participants and respondents, including the interviews interview period Do, D1, D2
that occurred at the end of the training session.
fakeo uninformed fake Fabricated interviews from the training session. Participants told only to “pre-  training session Do
tend they were interviewing five different people, and answer as they would.”
fakey informed fake Fabricated interviews from the first round of the follow up session. Participants  follow up session  Dj
knew the true purpose of the study and were given a monetary incentive to
fabricate data realistically.
fakep  better-informed fake  Fabricated interviews from the second round of the follow up session. Partici-  follow up session D2

pants knew the true purpose of the study, received an incentive to fabricate data
well, and were given feedback on features used to identify their fabricated data.

Table 4. Summary of data labels.

Experiment protocol

In realistic scenarios, interviewers who fabricate data have an
incentive not to get caught and might learn about curbstoning
detection methods that are used. We designed our validation
experiment to simulate these conditions.

Specifically, we created three different settings under which
interviewers fabricated data. In the first setting, interview-
ers were not told anything about the purpose of our exper-
iment, and they were given no incentive to fabricate data
realistically—instead, they were told only to “pretend they
were interviewing someone and answer as he or she would.”
In the second setting, they were informed that the purpose of
our study was to test an algorithm to detect curbstoning, and
they were given a monetary incentive to fabricate data real-
istically; however, they were given no specific information
about how our algorithm worked. In the third setting—in ad-
dition to knowing the purpose of the study and being given an
incentive to fabricate data realistically—they were also given
personalized feedback about how the algorithm was identify-
ing their fabricated data.

The four different types of data that we collected (one real,
and three fabricated) are summarized in Table 4. Each in-
terviewer’s participation lasted approximately one week and
consisted of three phases: (1) the training session, which took
place in the lab; (2) the interview period, which took place
on the participant’s own time; and (3) the follow up session,
which took place in the lab. We describe each of these phases
in more detail below.

Training session

Interviewers began their participation in our study by coming
to a training session that lasted between one and two hours.
When they came, we told them that our research group was
running a survey about study habits on behalf of the under-
graduate advisors in our department. They would be inter-
viewers for this survey, and for the week between the training
and follow up sessions, they were to administer the survey
using ODK Collect on any 10 eligible participants who they
could find. We told them that in addition to being interested
in the results of the survey, we were also testing some new
(unspecified) features of ODK Collect involving data quality.
We did not give them any additional information about the
purpose of our study.

After demonstrating to the participants how to use the soft-
ware and conduct the interview, we told them that we wanted
them to practice on their own phones by “pretending that they

were interviewing five different people and answering as they
would.” The data collected during this portion of the training
session was the first fabricated data created by the partici-
pants. We refer to this data, labeled fakey, as the uninformed
fake data.

After the participants finished generating the fake, data, we
instructed them to take turns interviewing each other. They
were to do everything that they would in a normal survey,
including obtaining consent. This data was the first data
that we gave the label real. (Most of the real data came
from the interview period described below.) At the end of
the training session, we gave participants a $20 gift card as
compensation for their time.

Interview period

Following the training session, we asked participants to ad-
minister the survey to 10 eligible respondents over the course
of a week. (There was, however, no enforcement of this re-
quest, and compensation was not dependent on the number
of respondents interviewed.) Participants conducted the sur-
veys whenever they wanted, using their own Android phone
or a loaner Android phone if they did not have their own. The
data collected during this period was given the label real.

Because the participants were not supervised during this pe-
riod, we took two measures to ensure that the data that they
were collecting was actually real. First, we performed re-
interviews on a random sample of respondents (and informed
the interviewers that we would do this). Second, at the end of
the follow up session, which we describe below, we asked
if there were any data quality issues that we should know
about. We were careful to convey that we would value any
revelations about fabricated data or other deviations from the
protocol and that such revelations would not affect compen-
sation. As we will discuss below, interviewers gave us some
valuable information during this debriefing.

Follow up session

After the interview period, we asked participants to come
back to the lab for a two-hour follow up session, which con-
sisted of two rounds.

In the first round, we began by informing participants of the
true purpose of our study, telling them that we were “design-
ing algorithms to automatically detect fabricated survey data”
and “testing how well our algorithms predict which data is
fabricated.” Now that they knew the true purpose of the study,



data than in the real data.

lower in your fabricated data than in the real data.

Our algorithm logs how many seconds you spend on the screens in which you are supposed to read something to the respondent. For each
submission you gave us, it found the total number of seconds you spent on these screens. This number tended to be higher in your fabricated

Our algorithm logs whenever you move backwards through the form (by swiping to the right). For each submission you gave us, it computed the
total number of times you moved backwards. This number tended to be lower in your fabricated data than in the real data.

Our algorithm logs the total amount you scrolled up or down on a screen (in pixels) on each submission you gave us. This number tended to be

Figure 2. Example feedback email sent to interviewer.

they were to spend the next 40 minutes fabricating between
4 and 10 more forms.2 To incentivize them to fabricate data
realistically, we said,

[We] will be giving you feedback at the end of the 40
minutes on how well you fooled the algorithm. Each
submission that you give [us] will be given a score by
the algorithm, where a low score indicates that it could
not tell your data was fabricated—or, in other words, that
you did a good job fabricating data.

They were to think of this as a “friendly challenge” to see who
could fabricate the data the best, and the person who got the
lowest score would get an extra $10 gift certificate. We called
the data that we collected during this round the informed fake
data and gave it the label fake;.

After this data was collected and uploaded, we ran a
script that extracted 9 features for each form, called the
feedback-eligible features (max-select-one-edits, mean-
select-one-edits, mean-string-length, median-answer-
time, note-time, num-conditional, num-previous, num-
swipes, and total-scrolled). We chose these features
because—based on previous research and our own intuition—
we thought that they would be both predictive of fabrication
and easy to explain to participants. After the script extracted
the feedback-eligible features, it trained a simple classifier on
these features and used its output to generate the fabrication
scores. We read the scores for each participant aloud to the
group and immediately gave the $10 gift card to the winning
participant.

In the second round, we said to the interviewers,

Now [we’re] going to give each of you some personal-
ized feedback on how you did. The algorithm looks at
various measures of how you entered the data for each
form. High or low values of these measures may indi-
cate that your data is likely to be fabricated. For each
of you, [we’re] going to send you an email that gives

2We gave this flexibility to participants to avoid artificially con-
straining the amount of time that they had to fabricate data. Given
our instructions, the particpants had between 4 and 10 minutes to
fabricate each form. We chose this range of times based on how
long it took participants to collect their first real data in the train-
ing sessions. Of the 24 real forms filled out in the training sessions,
the completion times of 22 fell within this range. Additionally, the
instructions given to respondents included explicit wording to keep
them from rushing: “There is not necessarily an advantage to cre-
ating a lot of fake data. You may—but do not have to—use the
entire 40 minutes.” Regardless, in most of the follow up sessions,
respondents finished fabricating their data before the 40 minutes had
elapsed.

the top three measures that were used to predict which
of your forms were fabricated. You can think of these
as the clues that the algorithm used to figure out which
forms you were fabricating.

For each participant, we ran a script that calculated the three
feedback-eligible features that were most correlated with his
or her own data being fake, along with the direction of that
correlation. Then, we generated emails that explained these
correlations and sent them to the participants. An example of
an email sent during one of the follow up sessions is shown
in Figure 2.

After they received these emails, we gave them another 40
minutes to fabricate between 4 and 10 surveys. We said,
“When you fabricate these surveys, keep in mind the report
you [got]. This may help you to better fool the algorithm.” As
in the first round, we gave them a reward of $10 if they got
the best score. We called the data collected during this sec-
ond round the better-informed fake data and gave it the label
fake,. At the end of the follow up session, we gave partic-
ipants a $30 gift card—in addition to any of the additional
award money received—as compensation for their time.

Data collection

We collected data for our validation experiment between
April 12,2012 and May 14, 2012. Twenty-eight interviewers
participated (18 male, 10 female), collectively interviewing
256 respondents and generating 448 fabricated forms. Inter-
viewers were between the ages of 18 and 27 and were under-
graduate or Masters students at the University of Washington.
Most of them had an engineering or technical major.

All of the 28 participants who attended a training session also
came to a follow up session. There were 11 training sessions
and 11 follow up sessions, which varied in size between one
and five participants.® Although each interviewer’s involve-
ment with the study was intended to last exactly one week,
because of last-minute scheduling changes, this period actu-
ally varied between 5 and 9 days.

Our data quality measures gave us confidence that most of the
data labeled real was actually real. For 26 of the 28 inter-
viewers, the first random respondent we chose to reinterview
verified that the interview actually occurred. (When this hap-
pened, we did not reinterview any other respondents.) The
other two had only one respondent leaving contact informa-
tion, who could not be reached.

3If there was only one participant in the follow up session, we
awarded the $10 gift certificate to the participant if he or she beat
a predetermined cutoff score.



Label  Training Test

real 203 38%) 53 (33%)
fakeo 98 (18%) 26 (16%)
fake; 134 (25%) 49 (30%)
fake, 106 (20%) 35 (21%)

Table 5. Distribution of labels for training and test sets. There were 541
instances in the training set and 163 instances in the test set.

During the debriefing at the end of the follow up session, we
learned some important information from interviewers. Three
of them told us that for a total of 8 forms, they collected data
on paper during the interview and entered it into the phone
later; three of them told us that for a total of 5 forms, they
handed the phone to the respondent to self-administer; and
finally, one of them told us that he fabricated 2 forms in order
to reach the goal of 10 interviews. Although these types of
deviations from protocol could occur in a real survey, it was
unclear what label should be given to these forms. Depending
on the survey, having a respondent self-administer the survey
may or may not be acceptable, and the fabricated data from
the interview period that we discovered does not fit cleanly
into one of our three labels of fabricated data. Therefore, to
ensure that our data accurately reflected the study protocol,
we removed these 15 forms.

As we collected the data, we divided it into a training and
test set. To ensure that each interviewer’s forms were divided
into the training and test sets in a similar way, we performed
the following procedure. For each interviewer ¢ and for each
label £ in {real, fakeo, fake;, fake,}, we looked at all of
the forms completed by interviewer ¢ having label ¢. If the
number of these forms was between 0 and 2, we did not re-
move any of the forms for the test set. If it was between 3
and 5, we randomly chose 1 of the forms to be in test set. If it
was between 6 and 10, we randomly chose 2 of the forms to
be in test set. Otherwise, if it was some number r > 10, we
randomly chose [r/5] forms to be in the test set.

This procedure created a training set of size 541 and a test
set of size 163. The distribution of the labels in each of these
sets is shown in Table 5. To avoid over-fitting, we did all of
our exploratory data analysis on the training set (using cross-
validation when necessary).

Validation of study protocol

The purpose of giving feedback between the two rounds of
the follow up session was to simulate what happens as inter-
viewers learn and adapt to an algorithm to detect curbstoning.
However, just because the interviewers received personalized
feedback does not mean that they necessarily understood it or
reacted to it. Before we tested how well a classification algo-
rithm could identify fabricated data, we validated that inter-
viewers did indeed react to the feedback that they were given.

Recall that there were a set of nine feedback-eligible fea-
tures that were used by the algorithm in the follow up session
and that the interviewers were sent an email that told them
which three of these features were most correlated with fab-
rication, along with the direction of the correlation. There
were 28 x 3 = 84 interviewer—feature pairs (Z,7) in which

interviewer ¢ received feedback about feature j. If the in-
terviewers understood and reacted to this feedback, then for
each such pair (4, 7), the mean value of feature j for inter-
viewer ¢ should change in the opposite direction of the initial
correlation between the two rounds of the follow up session.
The null hypothesis—that interviewers either did not under-
stand or did not react to the feedback—would imply that the
average value of feature ;7 would be just as likely to go up as
it would be to go down, regardless of whether the feature was
negatively or positively correlated with fabrication.

We found that 71 times out of 84, the mean value of j changed
in the opposite direction of the initial correlation. Thus, the
null hypothesis could be rejected (p < 0.001), suggesting
that, in aggregate, interviewers did react to the feedback in a
manner suggesting that they understood it.

The magnitude of the changes of the features between the two
rounds is important as well. For a graphical exploration of
the magnitude of the changes, we refer the interested reader
to Figure 6.1 in [3]. This figure, which we omitted to save
space, provides further support for the thesis that interviewers
understood and reacted to the feedback that they were given.

RESULTS

In this section, we describe the results of running a classi-
fier on the data we collected: we summarize the overall per-
formance, investigate how this performance depends on label
noise and training set size, and discuss limitations.

To evaluate a classifier separately on each of the three types
of fake data, we created three data sets: Dy, which consisted
of the real data and the fake, data; D;, which consisted of
the real data and the fake, data; and D5, which consisted
of the real data and the fake, data. We divided each of the
data sets into a training and test set according to the overall
split between training and test described in Table 5.

For classification, we chose the random forest algorithm [7]
because it is efficient, is considered to be one of the most ac-
curate off-the-shelf supervised classification algorithms [9],
exhibits little sensitivity to parameter-choice, and performed
well in our initial experiments on the training data. We used
the implementation provided by Weka [19], an open source
data mining library.

Overall performance

We trained a random forest classifier on the training set and
evaluated it on the test set for each of the data sets.* On data
set Dy, the accuracy was 96%; on data set D;, the accuracy

“Random forest takes two parameters: I, the number of decision
trees; and K, the number of features considered at each split in the
tree. Performance increases as [ increases; therfore the standard rec-
ommendation is to choose as high a value for I as is practical [7].
Based on preliminary experiments on training data, we determined
that / = 200 was high enough to obtain maximal performance and
low enough to be efficient. We chose this value for all of our exper-
iments. To optimize performance, we initially performed a search
through values of K (2, 4, 8, 16, 32, 64, 128), using as an optimiza-
tion criterion the accuracy achieved during 10-fold cross-validation
on the training set (averaged over 10 repetitions). Once we did this,
we saw that performance did not depend strongly on K. Thus, for
simplicity, we set K = 32 in the remainder of our experiments.



Data Prec. Rec. Spec. F1  Acc.

Do 093 096 096 094 0.96
D1 088 092 0.89 090 0.90
Do 085 0.80 091 0.82 0.86

Table 6. Performance of random forest.

Data Prec. Rec. Spec. F1  Acc.

Do 075 046 093 057 0.77
D1 0.71 031 089 043 0.61
Do 090 026 098 040 0.69

Table 7. Performance of random forest without behavioral data.
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Figure 3. ROC curves of random forest.

was 90%; and on data set D5, the accuracy was 86%.> More
detailed performance measures—including the precision, re-
call, specificity, and F}-score—are shown in Table 6. ROC
curves of the classifiers’ performance are shown in Figure 3.

Next, to see how much the behavioral data helped, we re-
moved all of the behavioral features. That is, we kept only the
response features described in Table 2 and the interviewer-
normalized features derived from them (which resulted in 47
features total). We re-trained a random forest classifer on the
training data, and re-tested it on the test data. The accuracies
achieved were 77% for Dy, 61% for Dy, and 69% for D-.
More detailed performance measures are shown in Table 7.

Discussion

Our results in Table 6 show that our approach can accurately
identify curbstoning and that the accuracy decreases as inter-
viewers learn about the algorithms and are given an incentive
to fabricate data realistically. However, even for data set D,
when interviewers had specific knowledge about how the al-
gorithm worked and were incentivized to avoid detection, the
accuracy was still 86%.

These high accuracies can be contrasted with the much lower
accuracies shown in Table 7, demonstrating how important
it was to use the behavioral data. In fact, the performance
without the behavioral data was not much above what would
be achieved by a baseline classifier that always output real—
especially for the data sets D; and D,, when interviewers

50One might wonder whether these numbers depended on the fact
that every interviewer was represented equally in the training and
test sets. To validate that our results did not depend too strongly on
how we chose test data, we performed an additional 10-fold cross-
validation of random forest on the entire data set, in which we di-
vided the data without considering the interviewer. In this analysis,
random forest had an accuracy of 0.93, 0.91, and 0.89 on the unin-
formed, informed, and better-informed fake data, respectively.

Error rate as function of label noise
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Figure 4. Effect of label noise.

knew the algorithm was being used and had an incentive to
fabricate data realistically.

The most important behavioral features were the timing-
based ones, in particular the delay-to-first-edit features. As
might be expected, fabricated forms tended to be completed
faster. Perhaps more surprisngly, even though 22 out of the
28 participants were told that they were fabricating data too
quickly in the first round of the follow up session, timing re-
mained a strong predictor of fabrication in the second round.
For example, the interviewer-normalized version of the fea-
ture delay-to-first-edit had a significant (p < 0.001) negative
correlation with the fake, data (r = —0.56). Timing was not
the only predictive feature, however. Other features that were
significantly (p < 0.001) correlated with fabrication included
the num-edits features (positively correlated), num-swipes
(negatively correlated), and total-scrolled (negatively corre-
lated).

In Chapter 6 of [3], we performed a systematic analysis that
listed the features most correlated with fabrication. From this
analysis, we made a few general conclusions, including (1) as
interviewers gain experience and motivation to fabricate data
well, behavioral data becomes a more important indicator of
fabrication, relative to response data; (2) to predict fabrica-
tion, it is better to use aggregated form-level features than
individual prompt-level features; and (3) timing information
from hard questions predicts fabrication more accurately than
timing information from easy ones. (For example, the time
taken to answer the question “If tuition was more expensive
for certain majors, would that stop you from pursuing a more
costly major?” was a better predictor of fabrication than the
time taken to answer the question “What is your sex?”.)

Robustness to label noise

If a survey organization were to apply our approach to detect
curbstoning, they would need labeled data on which to train a
classifier. It is easy to ensure that the fake data is actually fake
because it can be generated in a lab. It is less easy, however,
to ensure that real data is actually real because it is typically
gathered in less-supervised scenarios. Therefore, one might
expect some inaccuracy in the data labeled real.

We ran an experiment to simulate the effect of label noise in
the real data. For each data set Dy, Dy, and D5y, we ran-
domly chose a subset of the fake data in the training set and
switched its label to real. Then we trained the random forest
algorithm on this partially mislabeled training data. For each
value of p € {0.05,0.10,0.15, 0.20, 0.25,0.30}, we switched
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Figure 5. Effect of training set size.

the label on the amount of fake data needed to make p frac-
tion of the real data mislabeled. We repeated this 50 times
for each value of p and plotted the average error rate of the
resulting classifier on the test set in Figure 4.

Discussion

Figure 4 shows that, not surprisingly, as the noise in the la-
beled data increases, the accuracy of the resulting classifier
decreases. Once 30% of the real data is mislabeled, the
accuracy is barely above what one would get with the base-
line classifier that always outputs real. However, for a more
moderate level of noise, say 10%, the accuracy of all three
classifiers was still more than 80%. This result suggests that
our approach is robust to a moderate level of label noise.

Amount of training data required

Another practical concern facing a survey organization imple-
menting our approach is the question of how much training
data to use. To help answer this question, we ran an experi-
ment to test how the accuracy varied as the amount of training
data varied. For each of the three data sets Dy, D1, and Do,
and for each number m € {2,4,8, 16, 32,64, 128}, we cre-
ated a random subset of the training set consisting of m /2
real forms and m /2 fake forms. Then we trained a random
forest classifier on this data and measured its accuracy on the
test set. We repeated this procedure 50 times for each value
of m and plotted the average error rate in Figure 5.

Discussion

Figure 5 shows that the amount of training data required to
achieve performance close to what we have reported depends
on the type of fake data. Therefore, the amount of training
data that a survey organization collects should depend on the
anticipated sophistication of curbstoners. If it is mostly in-
terested in catching careless curbstoning, like the fake, data,
then it may need only a few dozen labeled instances. On the
other hand, if it is interested in catching more sophisticated
curbstoning, like the fake; or fake, data, then it may need
closer to 100 labeled instances.

Limitations

There are at least two limitations of our study. The first is that
the participants were relatively inexperienced as interview-
ers. When they fabricated the fake, data, they had not yet
conducted any real interviews, and when they fabricated the
fake; and fake, data, they had conducted approximately 10
interviews. Consequently, they may not have been as good
at fabricating data as more experienced interviewers, and this

inexperience may have caused our results to be overly opti-
mistic.® Further research is needed to determine the long-
term effectiveness of our approach.

The second limitation is that, in our study, if any data in a sur-
vey was fabricated, then the entire survey was fabricated. In
real surveys, interviewers might fabricate only certain ques-
tions of a survey, which would be harder to detect. Further
research is also needed to evaluate the effectiveness of our
approach in detecting this type of fabrication.

CONCLUSION

In this paper, we described a new approach to detecting inter-
viewer fabrication in surveys: instrumenting electronic data
collection software to record logs of low-level behavioral data
and applying supervised classification on features extracted
from these logs. We showed that this approach could identify
fabrication with an accuracy of up to 96% and that even when
interviewers had specific knowledge of how the algorithm
worked and were incentivized to avoid detection, it could still
achieve an accuracy of 86%. We also demonstrated the ro-
bustness of our approach to a moderate amount of label noise
and provided practical recommendations, based on empirical
evidence, on how much training data is needed.

One might wonder whether the benefit of our approach out-
weighs the cost. Further research is needed to answer this
question definitively, but we argue briefly here that our ap-
proach may be economically justified. Managers of large
surveys, such as the Demographic and Health Surveys (con-
ducted over 260 times in 90 countries over the last 30 years)
already spend their time and budget on ensuring data qual-
ity using costly techniques such as re-interviews. For a
small amount of initial overhead, they could obtain labeled
data as we outlined—our results show that there does not
have to be a lot. Then they could use pre-built software to
record behavioral data, build a classifier, and output predic-
tions that would dramatically improve their ability to identify
low-quality data.

Even in less elaborate surveys, interviewers still train for
hours, some of which are spent fabricating surveys to gain
familiarity with the questionnaire and software. In a deploy-
ment using our approach, these fabricated forms could be
used as the labeled fake data. The labeled real data could be
obtained from surveys that are known to be high quality, such
as ones from trusted interviewers or verified by re-interviews.
These labels would not be perfect, but our approach is ro-
bust to moderate amounts of label noise. Thus, the overhead
needed to apply our techniques may actually be quite small.

There are several directions for future research; we describe
three here. First, as mentioned earlier, it is important to study
how well our approach works on larger surveys with more
experienced interviewers and partial fabrication of surveys.
Second, the approach that we have proposed is black-box in

SThere is, however, at least one argument to suggest that this effect
may be small: the fact that random forest did so poorly without the
behavioral data for D; and D2 (Table 7) suggests that, at least by
the follow up session, our interviewers had enough experience to
simulate realistic responses (if not realistic behavior).



the sense that it does not incorporate expert knowledge re-
garding what tends to characterize fabricated data. However,
people familiar with a survey might have important knowl-
edge, such as lower bounds on the time required to answer
certain questions. Investigating how this type of knowledge
can be incorporated into a curbstoning detection system (both
from an interface and algorithmic perspective) is an important
direction for future work. Third, it would be interesting to
study how data from the many sensors built into smart phones
could be leveraged to detect fabrication or other data quality
issues. GPS is an obvious candidate (but not a panacea, since
interviewers being in the right place at the right time does not
alone guarantee data quality). One could also imagine em-
ploying other sensors, such as the accelerometer, light sensor,
microphone, or camera.
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