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ABSTRACT

Systematic interviewer error is a potential issue in any health
survey, and it can be especially pernicious in low- and middle-
income countries, where survey teams may face problems of
limited supervision, chaotic environments, language barri-
ers, and low literacy. Survey teams in such environments
could benefit from software that leverages mobile data col-
lection tools to provide solutions for automated data quality
control. As a first step in the creation of such software, we
investigate and test several algorithms that find anomalous
patterns in data. We validate the algorithms using one la-
beled data set and two unlabeled data sets from two com-
munity outreach programs in East Africa. In the labeled
set, some of the data is known to be fabricated and some
is believed to be relatively accurate. The unlabeled sets are
from actual field operations. We demonstrate the feasibil-
ity of tools for automated data quality control by showing
that the algorithms detect the fake data in the labeled set
with a high sensitivity and specificity, and that they detect
compelling anomalies in the unlabeled sets.

1. INTRODUCTION

Countries need accurate population-level health data in
order to allocate resources, improve performance, and re-
spond to health emergencies [34]. In low- and middle-income
countries, millions of dollars are spent every year to gather
health-related data. Surveys and health surveillance efforts
involving human interviewers face concerns about low-quality
data because of misunderstanding or deliberate falsification.
Although little has been published on fabrication rates, in
one survey from the United States Census Bureau, at least
6.5% of interviewers were found falsifying data [40]. Because
of this, most surveys involve quality control efforts to try to
detect and resolve sources of systematic interviewer error [1].

In developing countries, first PDAs, and now mobile phones,
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have risen in popularity as a platform for data collection
and have been shown to improve both efficiency and data
quality [45]. Tools such as Open Data Kit (ODK) [20] and
EpiSurveyor [17] can immediately upload data to servers.
This abillity has enabled improved quality control efforts by
teams of people who monitor data [10].

Recent ICTD research has explored approaches for im-
proving data quality in low income countries, such as using
call centers for dictation by health workers [36], using prob-
abilistic models of data to prevent and correct data entry
errors [7, 8] and creating a hosted paper form digitization
service [9]. The objective of our current work is complemen-
tary: we seek to create tools to assist data quality control
teams to identify suspicious or surprising trends that could
be the result of interviewer misunderstanding or falsifica-
tion. As a first step, we investigate and test algorithms that
could form the basis of such tools.

We begin our validation using a unique labeled dataset
from a community health organization in Tanzania. In this
data set, some of the data is known to be fabricated, and
some is believed to be relatively accurate. We explore how
well we can detect the fabricated data algorithmically. First,
we investigate how well several off-the-shelf supervised ma-
chine learning techniques perform. Next, because labeled
data sets may not always be available for training, we de-
velop two unsupervised outlier detection techniques and test
how well they detect the fake data. We show that both the
supervised and unsupervised techniques predict which data
is fake with a high sensitivity and specificity.

Because our labeled data sets were obtained under some-
what artificial conditions, we next run our algorithms on
two more realistic (but unlabeled) data sets. We show that
the unsupervised techniques find compelling anomalies, such
as an interviewer who claimed that 89% of her respondents
wanted to know more about family planning, even though
the overall reported percentage for all interviews by all in-
terviewers was only 29%, and an interviewer who claimed
that 91% of her respondents were not home, even though
the overall percentage was only 28%. (Figure 5 provides
more examples.) We conclude with a brief discussion of how
these algorithms could be integrated into tools for data qual-
ity control.

To summarize, our main contributions are threefold:

e We develop unsupervised outlier detection techniques
for finding anomalous data that, to our knowledge, are



novel.

e We quantitatively validate both the off-the-shelf su-
pervised techniques and the novel unsupervised tech-
niques, by showing that they successfully predict which
data is fabricated in the labeled set.

e We informally validate the unsupervised techniques by
showing that they find compelling anomalies in realis-
tic but unlabeled data sets.

Although we are interested in systematic interviewer-level
errors from any cause, the low-quality data in our labeled
data arises specifically out of interviewer fabrication. Never-
theless, we believe our techniques also apply to low-quality
data from other causes, such as interviewer misunderstand-

ng.
1.1 Motivation

Our work is motivated by a broad range of data collection
situations, but for concreteness we anchor our discussion on
data management technologies for community health worker
(CHW) programs. In these programs, trained community
members who are not healthcare professionals travel be-
tween homes in a given area to check up on clients, perform
routine care, promote healthy behavior, and make referrals
to health facilities when necessary. CHW programs can pos-
itively affect health outcomes, but they require strong super-
vision and support to be effective [30]. To address some of
these needs, tools have been developed that run on mobile
phones carried by CHWs [14, 16, 27, 32, 46]. For example,
CommCare [14, 32] is an open-source software platform for
CHWs that is used to register new clients, structure inter-
views, and record responses directly into the phone. The
data received by the application is uploaded to a central
server called CommCareHQ, which tracks cases and gener-
ates reports for supervisors and funders.

CommCare removes the need for CHWs to manually en-
ter their data into a database after recording it on paper,
improving efficiency [32]. The immediate digitization of the
data provides other advantages as well. It has the poten-
tial to make the data quickly available to doctors and epi-
demiologists for health surveillance. It also makes it easier
for supervisors to manage their operations effectively. For
example, a supervisor can use CommCareHQ to monitor
the number of visits that CHWs are making to ensure that
program objectives are being met. Or, automated SMS re-
minder systems built on top of the case management logic
of CommCareH(Q can be used to encourage CHWs to follow
up with clients when needed. In fact, it was recently shown
that one such system decreased the number of days a CHW'’s
client were overdue for a follow up visit by 86% [15].

However, the data management capabilities of CommCare
are only useful if it is managing high-quality data — and
this might not always be the case. At one CommCare de-
ployment, at an organization we will call “Organization A,”
surprising patterns in the data were discovered. Further
investigation revealed that a significant number of CHWs
were entering fabricated home visits into their phones. At
a different program, at an organization we will call “Or-
ganization B,” we found that supervisors were performing
extensive data quality control measures that exhibited the
degree to which they were concerned about the issue. Sur-
vey methodologists use the term “curbstoning” to describe

interviewer data fabrication, and as discussed in the related
work section, the phenomenon has been a concern of these
researchers for over 60 years.

Complete fabrication of data is just an extreme case of
the type of data quality problems that can arise in low-
resource settings. In our experience, most data collectors
are conscientious and hardworking. However, a field worker
acting in good faith may easily introduce bad data into the
pipeline because of a misunderstanding or miscommunica-
tion. This may happen especially easily in the developing
world because of a pervasive lack of expertise, low training,
high turnover, mismatched incentives, and cultural differ-
ences regarding data [9)].

Low-quality data in a system like CommCare negates the
intended benefit of providing decision makers a sound basis
for their decisions. Even more importantly for the commu-
nity health setting, it hinders the ability of supervisors to
manage their operations effectively, which can directly af-
fect the health of the client population. Supervisors already
spend a portion of their limited time to address data quality
issues; the development of automated tools to assist them
in their efforts is of primary importance.

1.2 Organization

We begin in Section 2 by describing related work. In Sec-
tion 3, we describe the data sets that we use to validate our
algorithms. We briefly define terminology in Section 4. In
Section 5, we describe the supervised machine learning tech-
niques and the results of our validation of these techniques.
We do the same for the unsupervised techniques in Section 6.
In Section 7, we describe the results of running the unsuper-
vised technique on the unlabeled data sets. We conclude in
Section 8 by briefly discussing how these algorithms could
be integrated into useful tools.

2. RELATED WORK

Data quality has motivated a number of ICTD interven-
tions (see, for example, [9, 35, 36, 38]). Perhaps most rel-
evant to our work is Usher [7, 8], a software program that
improves data quality at the form level by creating a proba-
bilistic model of the form data and using this to guide data
entry clerks away from making mistakes. This work is sim-
ilar to ours in its use of machine learning to improve data
quality. Although its use case is predicated on the assump-
tion that users are cooperative and not deliberately falsify-
ing data, the probabilistic model that it builds could be ex-
tended to detect fabrication. We note that our unsupervised
techniques are different from Usher’s supervised approach.

Standard data cleaning practice involves finding and re-
moving numeric outliers [21]. Our novel unsupervised tech-
niques can be considered an extension of this idea to out-
lying distributions of categorical data. Of course, standard
numeric outlier detection algorithms should also be included
in a working system for monitoring data quality.

Another relevant body of work comes from researchers
in survey methodology. Traditional methods for improving
survey quality emphasize a multi-level process-oriented ap-
proach [1]. This line of work draws on both the statistical
and psychological literature to understand how errors are
introduced and what can be done to prevent them. Error
prevention techniques at the interviewer level include match-
ing interviewers to respondents by socioeconomic charac-
teristics, recruiting only experienced interviewers, carefully



training interviewers in the concepts and objectives of the
survey, and re-interviewing a small random sample of re-
spondents to detect anomalies [1]. All of these techniques
may be difficult in resource-constrained settings.

As mentioned in the introduction, survey methodologists
use the term “curbstoning” to describe data falsification by
interviewers. This problem first received attention in a 1945
paper by Crespi [12], who gave several reasons that inter-
viewers might fabricate data, including long questionnaires,
complex or intrusive questions, unreasonable expectations,
and hard to reach subjects. All of these are potential prob-
lems faced by fieldworkers in developing regions that should
be considered when programs are designed. We see our work
as complementary to a careful consideration of these impor-
tant human factors.

More recently, researchers with the United States Census
Bureau have published a series of papers on curbstoning by
census interviewers [2, 5, 23, 28, 31, 40]. Techniques to de-
tect curbstoning are varied. Some researchers have explored
the use of timing information recorded by data entry pro-
grams used during the survey [5, 31, 33]. For example, Li
et al. show that falsified interviews in the Current Popu-
lation Survey in the United States Census are more likely
to be faster than average and to occur shortly before dead-
lines [31]. The ability of tools such as ODK and CommCare
to immediately upload metadata such as timing informa-
tion provides an opportunity to leverage this observation.
Indeed, in Section 5, we show that timing data can help us
detect fabrication in the community health setting.

Other papers have looked at anomalous distributions for
particular questions that might indicate someone minimizing
effort or the ability of supervisors to monitor performance,
such as an unusual amount of unavailable respondents or
missing telephone numbers that would prevent supervisor
followups [23, 28, 33, 44]. Some researchers hypothesize that
interviewers who falsify data may choose less extreme values
and have answer distributions with lower variance [37, 42].
A large body of work examines the potential of Benford’s
Law [22] to detect low-quality or falsified data [3, 26, 39, 42,
43]. This technique does not extend to non-numeric data.

Similar to our work, some survey methodologists have
explored the use of machine learning methods, such as lo-
gistic regression, to detect data that is likely to have been
faked [31]. This work uses models trained on metadata, such
as timing information, whereas our work uses the data itself
in addition to metadata.

To summarize, our research is based on a number of tech-
niques that have appeared in related contexts. Our contri-
bution is to bring these techniques together and systemat-
ically explore them in the context of mobile tools for data
collection in developing regions. We join others [9] in argu-
ing that the results presented here and related work [8] can
form the basis of an important research agenda: to develop
algorithms and tools to ensure that the valuable data from
the developing world is of high quality.

3. DATA SETS

We use three data sets for our validation. The first is a
labeled set from a community health program in Tanzania
(“Organization A”), in which some CHWSs were known to be
fabricating data and some CHWs were believed to be ob-

taining accurate data. This data set is used in Sections 5
and 6. The second is a large unlabeled set, also from Orga-
nization A, collected from actual field operations. This data
set is used in Section 7. The third is from a community
outreach program in Uganda (“Organization B”). This data
set is also used in Section 7. We describe each in turn.

Organization A (Labeled)

This data is from a CommCare-supported CHW program in
Tanzania that specialized in maternal and neonatal health.
The workers travelled between approximately 100 houses in
the period of a month, asking basic health and demographic
questions, such as whether anyone had a cough, what kind
of family planning methods were being used, and whether
there were any children under 2 years old. If a CHW found
an urgent health problem, she would refer the household to
a clinic.

The data consists of 846 forms filled out by 40 CHWs.
There were 12 questions in total, of which one was numerical
(“How many people are in your household?”) and 11 were
categorical. CommCare recorded the time it took CHWs to
fill out each form, but it did not record per-question timing
information. Of the 846 rows in our data set, 317 were
labeled real (from 15 unique CHWs) and 529 were labeled
fake (from 25 unique CHWsS).

The real part of our labeled data set came from a study
measuring how often different interviewers reported the same
answers on surveys of the same household [13]. Unlike nor-
mal day-to-day operations at Organization A, these inter-
views were conducted in a central location, to which moth-
ers from households in the area would travel. The interviews
were conducted on seven different days in November and De-
cember of 2010. Because of the unusually high amount of
supervision during these interviews, we have high confidence
that the interviewers were faithfully interviewing the clients
and recording their responses accurately.

The fake part of our labeled data set was obtained from a
“fake data party” that we set up for the purpose of this study.
Twenty-five CHWSs from Organization A were gathered and
given a small payment to fill out several copies of the same
form used for the real data. They did not actually inter-
view any households while filling out these forms. Instead,
to approximate the experience of a CHW who was trying to
fabricate data realistically enough not to get caught, they
were instructed in Swahili to “pretend they were a client
and answer as a client would.” Over two and a half hours,
these 25 CHWs faked a total of 529 forms. A brief manual
inspection of this data revealed no obvious misunderstand-
ings and no obvious shortcuts taken by the CHWs to fill out
the forms.

We emphasize that the labels on this data set are not
perfect. We cannot be certain that every form in the real
data set is accurate, and a CHW who is fabricating data in
a fake data party might do so differently than a CHW who
is fabricating data in the field. We believe, however, that
the labels are accurate enough and the data realistic enough
to provide a meaningful test for our algorithms.

Organization A (Unlabeled)

In addition to the labeled data set from Organization A, we
also use an unlabeled data set from the same program. We
believe that this data set is more representative than the
labeled data set because it comes from actual CHW field



operations during June and July of 2011. The form used is
similar to the form in the labeled set. It has 15 questions, all
of which are categorical. We filtered the data to include rows
only from CHWs who submitted at least 20 forms during
the two-month period. This resulted in a set of 4321 forms
submitted by 33 unique CHWs.

Organization B (Unlabeled)

This data set comes from the field operations of a community
outreach program in Uganda. A number of questions in this
data set were “check all that apply.” To transform these
into a multiple choice format, we created a separate yes/no
question for each possibility. This resulted in 103 different
questions. The raw data set consists of 328 rows submitted
by 42 interviewers. We filtered this to include rows only from
interviewers who submitted at least 8 forms, which resulted
in a final set of 265 forms submitted by 26 interviewers.

4. TERMINOLOGY

In Sections 5 and 6, we evaluate the ability of several al-
gorithms to predict whether survey data is real or fake. The
unit of prediction varies: in some cases predictions are made
on individual forms (form-level); in some cases predictions
are made on all of the forms filled out by a particular CHW
(interviewer-level); and in some cases predictions are made
on all of the forms from a particular CHW, but only for one
question at a time (question-level). For each case, a pos-
itive instance is one that contains fake data. For a given
algorithm, the true positive rate is the proportion of fake in-
stances that are correctly labeled as such. The false positive
rate is the proportion of real instances that are incorrectly
labeled fake. The sensitivity is the true positive rate, and
the specificity is one minus the false positive rate.

All of the classifiers we evaluate output a continuous-
valued score for each instance, where a higher score indicates
a stronger belief that the instance is fake. To transform this
score into a binary classification (either real or fake), a cutoff
score must be chosen: all instances with a score higher than
the cutoff are predicted to be fake, and all instances with
a score lower than the cutoff are predicted to be real. The
choice of cutoff presents a tradeoff. A high cutoff will result
in fewer false positives (higher specificity), but also fewer
true positives (lower sensitivity). A low cutoff will result in
more false positives (lower specificity), but also more true
positives (higher sensitivity).

Receiver Operating Characteristic (ROC) curves [18] show
this tradeoff graphically. They plot the true positive rate
versus the false positive rate for all possible cutoffs. A point
on the diagonal line y = x is what we would expect if the
classifier was guessing randomly with a fixed probability of
outputting “fake.”! If a classifier has an ROC curve that
is substantially above this line, than this is evidence that
it is making predictions that are more accurate than would

LFor example, if a classifier output “fake” for all instances,
it would have both a true and false positive rate of 1. If
it output “fake” with probability 0.5 for each instance, it
would have both a true and false positive rate of 0.5. Clearly,
this line of reasoning can be extended to any point on the
line y = = by choosing the appropriate fixed probability of
outputting “fake.” Also note that any ROC curve will pass
through both (0,0)—for a threshold higher than any score
returned by the algorithm—and (1, 1)—for a threshold lower
than any score returned by the algorithm.

be expected by chance. The more an ROC curve is above
this line, the better the classifier’s predictive ability is. We
use ROC curves extensively in this paper to compare the
predictive abilities of various algorithms.

S. SUPERVISED METHODS

If data with labels indicating quality can be obtained, it
could be used to train a classifier to make predictions about
the quality of new data as it arrives. In this section, we
investigate the feasibility of such an approach by testing the
ability of off-the-shelf machine learning algorithms to create
classifiers for the labeled data set from Organization A.

To perform this investigation, we used Weka [19], an open-
source software distribution that implements a large number
of machine learning algorithms. After a brief initial explo-
ration, we settled on three widely-used machine algorithms
that seemed to perform fairly well for this data set: logistic
regression, the K2 algorithm for learning a Bayesian net-
work [11] and random forests [4].? Our purpose was not to
perform on exhaustive investigation to find the absolute best
classifier, since such an approach would be unlikely to gener-
alize beyond our data set. Rather, we wanted to see how well
commonly-used off-the-shelf machine algorithms performed.
We hoped to show that it only takes simple techniques to
make good predictions.

We tested each of our algorithms twice, once with the
completion-time attribute and once without. In Section 5.1
we test the ability of the algorithms to determine which
CHWs were faking data. In Section 5.2, we test the ability
of the algorithms to determine which forms were fake, a task
that is presumably harder.

5.1 Interviewer-level Experiments

To test the ability of these algorithms to determine which
of the 40 CHWs were creating fake data, we first aggregated
the data by CHW as follows. We expanded each categorical
question with k£ > 2 categories into k binary questions, one
for each category. Then, we took the mean of each of these
columns for each interviewer, creating a new table of labeled
data consisting of 40 rows (CHWSs) and 29 columns.

To test the algorithms, we used 10-fold cross validation.
That is, we randomly partitioned the 40 rows into 10 groups
of 4 rows. Then, for each group of 4 rows, we trained the
classifier using the 36 other rows and obtained a score from
the trained classifier on each of the 4 rows in the set. In
this way, scores were obtained for all rows using separate
training data.

The ROC curves for the scores obtained are shown in Fig-
ure 1. The results are quite positive, although the small size
of the interviewer-level data should be kept in mind. With-
out including the mean form completion time, two of the al-
gorithms were able to achieve 80% sensitivity at a specificity
of greater than 90%. Including the mean form completion
time improved the results further.

By drilling down into the data and the structure of the
classifiers, we can gain some insight into how they are able

2The logistic regression algorithm used a ridge estima-
tor [29]. The Bayesian network algorithm used the Sim-
pleEstimator class implemented in Weka. The random
forest algorithm used 10 trees, with each node considering
log M + 1 features, where M is the total number of features
in the data set.
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to make their predictions. Completion time is a good predic-
tor of whether a form was fake: the mean completion time
of the fake forms was 148 seconds, whereas the mean com-
pletion time of the real forms was 240 seconds. This result
is consistent with previous work using timing information
to detect fabrication [5, 31, 33]. Of course, one should not
discount the possibility that the lower completion time for
the fabricated data is an artifact of the structure of the “fake
data party.”

As another example, the largest coefficient from the lo-
gistic regression classifier (apart from completion time) was
for the question asking whether someone in the household
had diarrhea in the last month. The reason for this is that
CHWSs who were faking data significantly overestimated the
actual proportion of households for which that was true. The
proportion of households with diarrhea in the fake data was
35%, whereas the proportion of households with diarrhea in
the real data was only 5%.

5.2 Form-level Experiments

In the previous section, we leveraged the fact that in our
data, CHWs either faked all or none of their forms. In prac-
tice, this might not be true: cheating interviewers might fake
only some of their forms. In this section, we test the ability
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of machine learning algorithms to predict whether individ-
ual forms are real or fake. We use the same three machine
learning algorithms from the previous section, and again test
the algorithms both including and not including form com-
pletion time. For this case, there is no need to aggregate the
data, so the input now consists of 846 rows of data, with 13
attributes (12 questions plus the form completion time).

The ROC curves for a 10-fold cross validation are shown
in Figure 2. As we might expect, the results here are not as
strong as when data is aggregated for each CHW. However,
the classifiers still perform at a level substantially above
what we would expect by chance. At a 90% specificity,
the best-performing classifier using the completion-time at-
tribute had a sensitivity of about 65%, and the best-performing
classifier not using the completion-time attribute had a sen-
sitivity of about 55%.

In both the interviewer-level and form-level settings, the
success of the classifiers in distinguishing between the real
and fake data suggests the feasibility of using them in the
field to highlight potential fake data, given that labeled data
can be obtained. We conjecture that such methods may
also be useful in detecting low-quality data due to other
types of interviewer error. The potential helpfulness of the
completion-time attribute in making predictions highlights



an advantage of using mobile technology such as Comm-
Care or ODK that can immediately upload this metadata to
servers. In future work, we plan to investigate the potential
of other meta-attributes of the data to predict fabrication.

6. UNSUPERVISED METHODS

In practice, it might be infeasible to collect the labeled
data necessary for training classifiers. In this section, we
investigate unsupervised techniques that do not rely on any
labeled training data. We develop the techniques in Sec-
tion 6.1 and validate them against the labeled data set from
Organization A in Section 6.2.

6.1 The Techniques

In developing our techniques, we hypothesized that CHWs
might not have a good sense for the true distribution of the
quantities that they were measuring. If this were true, the
answer distributions of CHWs who were faithfully interview-
ing clients would tend on average to be close to the true dis-
tribution, but CHWs who were fabricating data would come
up with different answer distributions — and these might vary
from the norm in different ways for different CHWs. Mak-
ing the standard assumption from the unsupervised anomaly
detection literature that there are fewer CHWs faking data
than not [6], outlying answer distributions would tend to be
fake.

It is important to remember that the techniques developed
in this section do not detect fabrication directly. Rather,
they detect interviewer-level anomalies in the data. Such
anomalies could be due to other factors besides fabrication,
such as varying interview styles, levels of experience, or ge-
ographies. All of these causes are potentially interesting to
supervisors, however. Furthermore, in Section 6.2 we show
that the fabricated portions of our data do tend to score
highly according to the techniques developed here.

We start with some notation that will be used to define
both techniques. Consider an interviewer ¢ and a question
j with a finite, discrete set of answer values. Let X; be the
range of values that question j can take. For any x € Xj,
let g§ (z) be the number of times that interviewer i reports
the value z for question j. For all ¢, j, and = € X}, let

i - 9;' ()
fj (LL') - Z:EEXJ- g;’_ (.T)

be the fraction of times that interviewer i reports the value
z for question j.

Multinomial Model Technique

Given 9;7 we can ask what the chance of seeing this distri-
bution is, supposing that the answers are chosen according
to a multinomial probability distribution with parameters
estimated from the other interviewers. The lower this prob-
ability is, the more surprising interviewer i’s answers are.

Specifically, we compute a score mj- for each interviewer
as follows. For all z € X, let

g9; (@) =>_g; (z)
il i
be the frequency count for value x over all interviewers be-
sides 7. Let

_ 9@
Sex, 0 @)

be the normalized version of these counts. From this distri-
bution, we can calculate the expected count for value z from
interviewer 7 to be

Ej(z) = f7"(2) ) g¢;(«) .

ac’er

These expected counts can form the basis for a x°-test giv-
ing a p-value for the chance of seeing frequency counts that
deviate at least as much as g;-, given the null hypothesis that
the counts are drawn from a multinomial distribution with
parameters given by fj_i. That is, we calculate the statistic

0=y BB
! Ej(x)
zEX; J
and determine the probability of seeing a value at least this
large in a x? distribution with | X;|—1 degrees of freedom. A
smaller value of this probability indicates a greater amount
of surprise for interviewer ¢’s distribution. The final score,
m§, is the negative logarithm of this value. Thus, to sum-
marize, we compute the final score to be

) ) .
m}; = —log Pr [X|Xj|—1 > Q;} )
where a higher value indicates a greater amount of surprise.

S-Value Technique

The technique just described forms an expected distribution
for an interviewer by taking the weighted mean of the dis-
tributions for all other interviewers. Using the mean as an
estimator is sensitive to outliers: if there are a large number
of interviewers who have bad data, the expected distribution
obtained in this way might not be representative of the true
population distribution. We take inspiration for our second
measure from the field of robust statistics [24], which prefers
medians to means because of their decreased sensitivity to
outliers.

For any vector v, define p1,2(v) to be the median of the
values in v. For a question j and a value z € X, let f;(x)
be the vector of values fi(z) for all interviewers i. The
surprise for interviewer ¢’s distribution for question j can be
characterized by

dy= >

z€X;

f;(x) - ,Ul/z(fj (z))

We would like to use the d;- values to detect outlying distri-
butions, but for some questions, these values might naturally
be high for all interviewers. This could happen if, for exam-
ple, the question’s answer depends strongly on geography
and interviewers are widely dispersed. For this reason, we
normalize the d;- by their median. More precisely, let d; be
the vector of d; values over all 7, and let

dj

i Y
T pya(dy)

This value, which we named the s-value to indicate surprise,
will be higher the more interviewer ¢’s distribution for ques-
tion j is an outlier.

This technique is methodologically similar to the recently
developed “Tariff Method” of verbal autopsy [25]. Here the
goals are reversed, however. Instead of starting with signs
and symptoms and hoping that we can identify the cause of

i



death, we start with the survey responses, and hope that we
cannot identify the interviewer.

6.2 Validation

In this section, we use our outlier detection techniques as
classifiers. The scores mé- and s§ can be thought of as indi-
cating the degree to which these classifiers predict that ques-
tion j from interviewer i is faked. The sums m‘ = 3 y m§

and s' = Zj s; can be thought of as indicating the degree
to which these classifiers predict that interviewer i is faking
all of her questions. Just as in Section 5, we can use ROC
curves to show the sensitivity and specificity tradeoff given
by these scores.

One complication is that we expect the outlier detection
techniques to perform better when there is more real data
than fake data. Our labeled data set, however, is 63% fake.
To remedy this, we form test data sets by randomly choosing
a subset of real and fake CHWs and only including forms
from these CHWs when calculating the outlier scores. We
vary the ratio of real to fake CHWs: for our first data set (5:1
ratio), we chose all 15 of the real CHWSs and a random subset
of 3 of the fake CHWs. For our second data set (1:1 ratio),
we randomly chose 9 real CHWs and 9 fake CHWs. (In
fact, we repeated this 1000 times to achieve a representative
sample. The ROC curves that we show are the aggregate
ROC curves over all 1000 repetitions.)

Figure 3 shows the ROC curves generated by the interviewer-

level m® and s® values. For the 5:1 data set, both the multi-
nomial model technique and the s-value technique perform
quite well, achieving approximately an 80% sensitivity at a
90% specificity. Both methods continue to perform well at
the 1:1 real to fake ratio. In this case, the s-value method
achieves a 70% sensitivity at a 90% specificity, and the multi-
nomial model method achieves a 60% sensitivity at a 90%
specificity. It is perhaps surprising that the outlier detec-
tion technique works this well even when the amount of fake
data is the same as the amount of real data. We specu-
late that this is because in aggregate, the CHWSs come up
with a fairly accurate estimate of the population averages,
but the fake CHWs tend to deviate more from this estimate
than the real CHWs. We also speculate that the reason for
the s-value technique’s better performance is that its use of
medians to determine expected distributions is less sensitive
to the extra noise introduced by the large number of fake
CHWs.

Figure 4 shows the ROC curves generated by the mj- and
s; values, which correspond to predictions made at the level
of CHW-question pairs. Because the scores are not aggre-
gated by CHWs, the results in this case are not as strong.
Nevertheless, for both the 5:1 and 1:1 data sets, both meth-
ods perform substantially above chance levels, achieving 30-
40% sensitivity at 90% specificity. As with the interviewer-
level predictions, the two techniques have roughly the same
performance with the 5:1 data, but the s-value technique
does better than the multinomial model technique for the
1:1 data.

7. EVALUATION ON FIELD DATA

A limitation of the experiments described so far is that the
data from a fake data party might differ from the type of low-
quality data that we care about in practice, which might err
due to miscommunication or misunderstanding in addition

to deliberate falsification. Furthermore, even if we limit our
interests to detecting fake data, the data from a fake data
party might be different than the data from interviewers
faking data in the field who are highly motivated to avoid
being caught. An ideal experiment for our methods would
be to run them on true field data that is labeled according to
quality, but we do not have any such data. We do, however,
have a large corpus of unlabeled data, namely the unlabeled
sets from Organizations A and B described in Section 3.

Figure 5 shows, for both data sets, the five most surpris-
ing interviewer-question pairs according to the multinomial
model method described in Section 6. Each entry in the
figure shows the question text, along with the interviewer’s
distribution compared to the overall distribution from all
interviewers. For example, the figure shows that the most
surprising distribution from an interviewer at Organization
A, with an m§ value of 412.2, is “Do you want to know
more about family planning?” Interviewer 1 said that 89%
of her clients wanted to learn more about family planning,
whereas the proportion of clients, over all interviewers, who
responded this way was only 29%. It seems clear that a su-
pervisor would want to follow up on an anomaly like this.
Indeed, after showing a similar table to Organization B as
part of a demo, they informed us that they found informa-
tion like this very useful and were interested in the possibility
of using algorithms such as these as part of their operations.

One could ask whether the types of anomalies shown in
Figure 5 are what we would expect from chance fluctuations.
We do not think this is the case. One justification for this
is shown in Figure 6, which helps to visualize interviewer
correlations in the m;- values at organization B. Each bar in
this figure corresponds to an interviewer; the height is the
number of questions for which the interviewer’s distribution
has an m§ value in the top 95th percentile of the values for
all interviewer-question pairs. The bars are sorted from left
to right according to this frequency, and only the top 15
interviewers are shown.

Figure 6 shows that two interviewers have many more sur-
prising answer distributions than other interviewers. If the
m§ values were independently and identically distributed,
then for a given interviewer, the chance that a particular
question distribution would make it in the 95th percentile
is 0.05. Thus, for the first interviewer in Figure 6, the
chance that at least 27 questions would randomly appear
in the 95th percentile is the chance that a binomial ran-
dom variable with parameters n = 103 (the number of ques-
tions) and p = 0.05 would achieve a value of at least 27,
which is 8.5 x 1073, Since there are 26 interviewers, the
chance that this would occur for any interviewer is less than
26-8.5 x 107 = 2.2 x 107!, Hence, it seems highly likely
that something besides chance alone is causing this inter-
viewer’s distributions to be so different; a supervisor would
be well-advised to investigate further.

8. DISCUSSION

In this paper, we have demonstrated that our algorithms
have the potential to detect low-quality data collected by hu-
man interviewers. We showed that both the supervised and
unsupervised methods can detect the fake data in the labeled
set with a high sensitivity and specificity. We also showed
that the unsupervised techniques can find compelling anoma-
lies in real data sets from two separate community-based
programs using mobile data collection.
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Figure 3: Interviewer-level ROC curves for unsupervised methods.
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Figure 4: Question-level ROC curves for unsupervised methods.

A direction for future work is to obtain labeled data with
fake forms that are generated in a more realistic way. At the
fake data party, the CHWs did not know that their data was
being evaluated by its quality. In actual operations, CHWs
might be motivated to spend more effort faking their data
in order to avoid detection. We plan to test if our methods
remain successful when CHWs are rewarded for avoiding
detection.

We view this study as a preliminary step in the design
of tools for automated data quality control for mobile data
collection. The design and testing of such tools is left for
future work, but here we briefly discuss considerations re-
garding how they might use the algorithms discussed in this
paper.

Tools that use the supervised learning methods would
have the advantage of flexibility, since the characteristics of
low-quality data are likely to vary from one context to an-
other. If labeled data can be obtained, then a tool could be
trained on this data and then provide real-time feedback to
supervisors as data is collected. This feedback could be given
at the form-level, as in Section 5.2, or at the interviewer-
level, as in Section 5.1. In the latter case, data would have
to be aggregated by interviewer over a given time period.
This time period could be a sliding window, or the pre-

dictions could be made at specified time intervals, such as
before weekly meetings with interviewers.

Tools that use the unsupervised methods would have the
advantage of not requiring labeled data. The methods pre-
sented in Section 6 aggregate data at both the question and
interviewer level. The question-level aggregation may be
useful if interviewers are likely to misunderstand or mis-
report specific questions. Because of the interviewer-level
aggregation of the methods from Section 6, they require ag-
gregation of data over a window of time. However, one could
also imagine unsupervised methods that work at the form-
level and which could therefore provide immediate feedback
as forms are completed. These methods might look at com-
pletion time or unusual combinations of answers, for exam-
ple.

Tools could also take advantage of a richer set of metadata
than timing information alone. Mobile data collection tools
could record attributes from interviewers’ interaction traces,
such as skipped questions, questions answered out of order,
the amount of scrolling (which could be a proxy for effort),
or attempts to input out-of-range values (which could be a
proxy for competence). These features could be leveraged
by both supervised and unsupervised techniques.

Finally, one could imagine an adaptive system combining



Organization A (Tanzania)

Question 1 (score = 412.2): Do you want to know more about
family planning?

No Yes

Interviewer 1 (312 forms): 11% 89%

Everyone (3131 forms): 71%  29%

Question 2 (score = 335.4): Is the client available?
No Yes

Interviewer 2 (258 forms): 91% 9%

Everyone (4321 forms): 28% 72

Question 3 (score = 101.9): Do you want to know more about
family planning?

No Yes
Interviewer 3 (100 forms): 11% 89%
Everyone (3131 forms): 71%  29%

Question 4 (score = 95.5): Did you give any referral in
this household?

No Yes
Interviewer 3 (100 forms): 62, 38}
Everyone (3131 forms): 93% Th

Question 5 (score = 85.6): Did anyone in the household
have a fever yesterday or today?

No Yes
Interviewer 3 (100 forms): 68 32%
Everyone (3131 forms): 947, 6%

Organization B (Uganda)

Question 1 (score = 41.3): If yes, which of these
marketing activities do you do with this group?
(Choosing crops or varieties to grow and market)

No Yes
Interviewer 1 (16 forms): 44% 567
Everyone (265 forms): 947, 6%

Question 2 (score = 36.5): Why did you find yourself
without food? (There was no food distribution)

No Yes
Interviewer 2 (8 forms): 0% 100%
Everyone (265 forms): 94%, 6%

Question 3 (score = 35.5): Why did you find yourself
without food? (No one was willing to offer us some food)

No Yes
Interviewer 2 (8 forms): 0%  100%
Everyone (265 forms): 93% Th

Question 4 (score = 32.1): What did you do with the
information you got from the FIELD OFFICER? (I started
storing my produce at a warehouse or collection point)

No Yes
Interviewer 3 (9 forms): 11% 89
Everyone (265 forms): 89% 117

Question 5 (score = 31.7): What information have you
ever got from a FIELD OFFICER? (Supplying to WFP)

No Yes
Interviewer 3 (9 forms): 0%  100%
Everyone (265 forms): 84%, 167

Figure 5: The five most surprising questions from Organization A and Organization B.

supervised and unsupervised methods. To start, it could use
unsupervised methods to alert supervisors to suspicious pat-
terns. These alerts might be based a weighted combination
of factors, such as how outlying the answer distributions are
(using one of the methods from Section 6), form completion
time, or the number of interview refusals. As supervisors fol-
low up on these alerts, they would provide feedback to the
system regarding the true cause of the suspicious data. The
system could then use this feedback to adaptively modify
the weights of the different factors. Indeed, one could frame
this problem as an instance of active learning [41] in which
labels can be obtained, but for the cost associated with the
follow ups.
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