
Improved Approximation Algorithms for
Budgeted Allocations?

Yossi Azar1, Benjamin Birnbaum2, Anna R. Karlin2, Claire Mathieu3, and
C. Thach Nguyen2

1 Microsoft Research and Tel-Aviv University
azar@tau.ac.il

2 University of Washington
<birnbaum,karlin,ncthach>@cs.washington.edu

3 Brown University
claire@cs.brown.edu

Abstract. We provide a 3/2-approximation algorithm for an offline
budgeted allocations problem with applications to sponsored search auc-
tions. This an improvement over the e/(e−1) approximation of Andelman
and Mansour [1] and the e/(e − 1) − ε approximation (for ε ≈ 0.0001)
of Feige and Vondrak [2] for the more general Maximum Submodular
Welfare (SMW) problem. For a special case of our problem, we improve
this ratio to

√
2. We also show that the problem is APX-hard.

1 Introduction

The rising economic importance of online sponsored search advertising has led
to a great deal of research focused on developing its theoretical underpinnings.
(See e.g., [3] for a survey.) Since search engines such as Google, Yahoo! and
MSN depend on sponsored search for a significant fraction of their revenue, a
key problem is how to optimally allocate ads to keywords (user searches) so as to
maximize search engine revenue [1, 4–7]. In this direction, Mehta et al. [7] studied
a stylized version of the problem, which we call the Online Budgeted Allocation
problem. In their model, there is a set of bidders U and a set of keywords V .
Each bidder i ∈ U has a known daily budget Bi and a non-negative bid bij
for every keyword j ∈ V . The keywords arrive one-by-one in an online fashion,
with the bids for keyword j revealed only when j arrives. At each keyword
arrival, the algorithm (i.e., the search engine) allocates the keyword to one of
the bidders (i.e., displays that bidder’s ad as one of the sponsored search results
the user sees). The total profit extracted by the algorithm from each bidder is the
minimum of the budget Bi of that bidder and the sum of the bij ’s for keywords
j allocated to it. The goal is to find an allocation of keywords to bidders that
maximizes the total profit extracted by the algorithm. Mehta et al. [7] presented
an algorithm that achieves an optimal competitive ratio of e/(e − 1) for the

? This research was supported by the Israeli Science Foundation, NSF Grant CCF-
0635147, and by an NSF Graduate Research Fellowship.

case when the bids are much smaller than the budgets, a result also proved by
Buchbinder et al. [4]. When there is no restriction on the values of the bids
relative to the budgets, the best known competitive ratio is 2 [8].

Surprisingly, the approximability of the offline version of Budgeted Alloca-
tion, in which the algorithm can see all of the bids before allocating keywords, is
still not well understood. Lehmann et al. [8] showed that the problem is NP-hard,
and Andelman and Mansour [1] provided the first non-trivial approximation ra-
tio of e/(e− 1). Feige and Vondrak [2] improved this ratio to e/(e− 1)− ε (for
ε ≈ 0.0001) for the more general SMW problem.

In this paper, we give improved approximation algorithms for two versions of
the offline Budgeted Allocation problem. In the uniform version, each keyword
j has a single price bj . If a bidder i is interested in j, its bid bij is equal to bj .
Otherwise, its bid bij is 0. The non-uniform version removes this restriction, so
that the bij values can be arbitrary for each i and j.

1.1 Our Results

We provide a deterministic 3/2-approximation algorithm for the non-uniform
Budgeted Allocation problem (Section 2). This improves the previous best-
known approximation ratio of e/(e− 1)− ε (for ε ≈ 0.0001) [2]. For the uniform
version of the problem, we improve the approximation ratio to

√
2 (Section 3).

In both these algorithms, we assume that the maximum bid is no larger than
the smallest budget, i.e. maxi,j bij ≤ miniBi.

We also show that the problem is APX-hard (Section 4).

1.2 Related Work

As discussed above, before this work, the first non-trivial approximation ratio
for Budgeted Allocation was e/(e − 1), due to Andelman and Mansour [1]. For
the special case in which the bidders all have the same budget, these authors
were able to lower this ratio to approximately 1.39. Our algorithms apply to the
more general case in which the budgets may be different for different bidders.

Two recent unpublished works also study the Budgeted Allocation problem
and provide better approximation ratios than those obtained in this paper: In-
dependently of our work, Chakrabarty and Goel [9] have provided two elegant
algorithms, an iterative rounding algorithm and a primal-dual algorithm, both
of which achieve an approximation ratio of 4/3, matching the integrality gap of
the linear program used in this and other papers. Their paper also shows that it
is NP -hard to approximate Budgeted Allocation to a factor better than 16/15,
which subsumes the result in this paper on APX-hardness. In addition, build-
ing on our approach, Srinivasan [10] has recently provided another LP-rounding
algorithm that achieves an approximation ratio of 4/3.

The Budgeted Allocation problem is an important special case of SMW, the
problem of maximizing utility in a combinatorial auction in which the utility
functions are submodular. In the combinatorial auction setting the keywords are

items to be sold. SMW has been widely studied [2, 8, 11–14]. For submodular
auctions using the value query model, the best approximation algorithm gives
a factor e/(e − 1) [14]. This ratio has been shown to be the best possible for
this model [12, 13]. For the stronger demand query model it is possible to do at
least slightly better, that is e/(e − 1) − ε (for ε ≈ 0.0001) [2]. For solving the
Budgeted Allocation problem using the SMW demand query model one needs
to provide a polynomial-time demand query oracle. As noted by [15], one can
use a knapsack-type FPTAS algorithm to provide an approximate oracle that is
good enough for solving the problem.

The Budgeted Allocation problem is also similar to the generalized assign-
ment problem (GAP) [2, 15–17]. The main difference between Budgeted Alloca-
tion and GAP is that in GAP every keyword (or item, in GAP parlance) has a
weight and each bidder (or bin) has a fixed capacity that cannot be exceeded,
whereas in Budgeted Allocation, budgets can be exceeded, but no extra profit is
obtained from doing so. The best approximation algorithm for GAP does slightly
better than e/(e− 1) [2].

2 The 3/2-Approximation Algorithm

In this section, we describe the 3/2-approximation for the non-uniform version
of the problem.

2.1 High-level Idea

Our algorithms use linear program rounding. We represent the Budgeted Allo-
cation problem with the same natural integer program used in [1, 9, 10], in which
the 0-1 variables xij represent whether keyword j is allocated to bidder i:

max
∑
i∈U

min(Bi,
∑
j∈V

bijxij) s.t.
{∑

i∈U xij ≤ 1 ∀j ∈ V
xij ∈ {0, 1} ∀i ∈ U, j ∈ V .

Let L be the linear relaxation of this integer program in which the second con-
straint is replaced by x ≥ 0. (The upper-bound of 1 is guaranteed by the other
constraint.) Rounding the optimal solution carefully is what allows us to beat
the factor of e/(e− 1) of Andelman and Mansour [1].

For any fractional allocation x, define the graph G induced by x to be the
bipartite graph over U∪V with an edge {i, j} for every xij > 0, with weight wij =
bijxij .1 Rounding x can be viewed as a transformation of G into another graph
in which the degree of every keyword is 1. Our algorithms do this iteratively,
at each step modifying local structures so that the degree of at least one new
keyword is reduced to 1. Some weight in the objective function will be lost at

1 Notice that in a fractional solution, we can assume without loss of generality that
no bidder’s budget is exceeded. Therefore, the value of x is equal to the sum of the
edge weights in G.

each step, but we use a charging argument to bound this loss by 1/3 of the
original value of x.

The first observation for the proofs is that one can assume that the graph
G induced by a feasible fractional solution to L has a special structure. This
observation was made for optimal fractional solutions by [1], proved in [18], and
used by [9, 10]. We use a slightly stronger version that holds for any feasible
solution. This will allow us to assume that this special structure holds after
each rounding step, not just at the beginning. Say that bidder i is saturated if
min(Bi,

∑
j∈V bijxij) = Bi and is unsaturated otherwise.

Lemma 1. Any feasible solution x of L with induced graph G can be trans-
formed, in polynomial time, to another feasible solution x̃ that has an induced
graph that is a subgraph of G and that is a forest with at most one unsaturated
bidder per tree.

Proof. Consider a feasible solution x of L, and let G be its induced graph. We
provide a polynomial-time procedure to first eliminate cycles in G, and then
saturate all but one bidder in each component. The graph obtained from this
procedure will correspond to a solution x̃ that satisfies the statement of the
lemma.

Consider a cycle in G. Let i0, j0, . . . , ik−1, jk−1 be the vertices of the cycle in
order, where the i`’s are bidders and the j`’s are keywords. For 1 ≤ ` ≤ k−1, let
α` = bi`j`−1/bi`j`

. We can assume without loss of generality that
∏k−1

`=1 α` ≤ 1. (If
not, reverse the cycle, and all of the α’s become their reciprocals.) Since an edge
{i, j} only appears in G if j is partially allocated to i in x, it follows that both
xi`j`

and xi`+1,j`
are in the open interval (0, 1) for all `.2 Hence, we can choose

an ε > 0 small enough such that if, for all `, xi`j`
is increased by ε

∏`
`′=1 α`′

and xi`+1j`
is decreased by ε

∏`
`′=1 α`′ then the modified solution is still feasible.

Note that the amount allocated to each bidder except i0 stays the same, and
the amount allocated to i0 increases by ε(1−

∏k−1
`=1 α`) ≥ 0. Hence, the modified

solution does not have a smaller value. By performing this modification for the
smallest ε > 0 that changes the amount allocated on at least one edge to zero,
we can break the cycle without decreasing the solution value. Repeating this
until there are no more cycles, we can eliminate every cycle in polynomial time.

Now consider a connected component of G that contains two unsaturated
bidders, say, i0 and ik. Let i0, j1, i1, . . . , jk, ik be an arbitrary path in G that
connects i0 and ik. For 1 ≤ ` ≤ k−1, let α` = bi`j`

/bi`j`+1 , and let α =
∏k−1

`=1 α`.
Now, either bi0j1−αbikjk

≥ 0 or −bi0j1 +αbikjk
≥ 0 (or both). Suppose first that

bi0j1 − αbikjk
≥ 0. By a similar argument as before, there exists an ε > 0 such

that the following transformation results in a feasible solution: for 0 ≤ ` ≤ k−1,
increase xi`j`+1 by ε

∏`
`′=1 α`′ and decrease xi`+1j`+1 by ε

∏`
`′=1 α`′ . With this

transformation, the amount allocated to each bidder except i0 and ik remains the
same. The amount allocated to i0 increases by εbi0j1 and the amount allocated
to ik decreases by εαbikjk

. Hence, by our assumption, the solution does not

2 Here, and throughout the paragraph, indices are added modulo k.

decrease in value, and we can choose the smallest ε > 0 that either saturates
i0 or breaks the path. In either case, we make progress towards saturating all
but one bidder in each component. Now, suppose that −bi0j1 + αbikjk

≥ 0. We
proceed symmetrically: for 0 ≤ ` ≤ k − 1, decrease xi`j`+1 by ε

∏`
`′=1 α`′ and

increase xi`+1j`+1 by ε
∏`

`′=1 α`′ . This transformation does not reduce the value
of the solution, and we can choose the smallest ε > 0 that either saturates
ik or breaks the path. Therefore, in either case, we can keep applying one of
these procedures until, in polynomial time, each component has at most one
unsaturated bidder. ut

For a graph G induced by a fractional solution, say that a bidder is active if it
has at least one neighbor of degree 2 or more in G, and is inactive otherwise. In
our charging argument for the 3/2-algorithm, we charge to the weight allocated
to bidders when they move from being active to inactive. (Since this happens at
most once for each bidder, each unit of profit in the optimal fractional solution
is charged at most once.)

We call the process of transforming a subgraph to reduce the degrees of the
keywords rounding the subgraph. In general, this process will remove some of the
edges and transfer some of the weight removed to the edges that remain, while
respecting the constraints of the LP. For example, suppose that two keywords
j1 and j2 are allocated fractionally to bidder i and fractionally to some other
bidders i1 and i2, as shown in Fig. 1. One way to round this part of the graph
would be to remove the edges {i, j1} and {i2, j2}. Once this is done, i has some
unused budget that can be used to transfer an additional fraction of j2 from i2
to i. In general, transferring weight in this manner will be essential to obtaining
our approximation ratio.

i2

j2

i

j1

i1

i2

j2

i

j1

i1

Fig. 1. One way to round a path that has three bidders. When edge {i, j1} is removed,
this frees up some budget in i to accommodate some of the weight of j2 that was
originally allocated to i2.

The main idea of our proof is that in every tree with active bidders, there
is a small local structure involving only a constant number of nodes, such that
if we round that structure so as to minimize the resulting loss in the objective
function, the loss is at most 1/3 of the budget spent by the bidders that become
inactive.

2.2 The Algorithm

Our 3/2-approximation algorithm is given below by Algorithm 1. At each it-
eration of the while loop, our algorithm looks for one of the interesting nodes
(Definition 4) and rounds keywords in the associated structure. For each of the
four types of interesting nodes, we describe a rounding subroutine used by the
algorithm. We will show that the loss of these subroutines can be charged to the
nodes that become inactive, which we will use to prove that Algorithm 1 is a
3/2-approximation.

Theorem 2. Algorithm 1 is a polynomial-time 3/2-approximation for the Bud-
geted Allocation problem.

Algorithm 1: 3/2-approximation algorithm for Budgeted Allocation
Input: Set of bidders U , set of keywords V ; for each i, j, bid bij of bidder i for

keyword j; and for each bidder i, budget Bi.
Output: Allocation of keywords to bidders.
solve the following LP to get an optimal solution x with induced graph G:

max
∑
i∈U

min(Bi,
∑
j∈V

bijxij) s.t.

{∑
i∈U

xij ≤ 1 ∀j ∈ V
0 ≤ xij ∀i ∈ U, j ∈ V .

transform G into a forest with ≤ 1 unsaturated bidder per tree (Lemma 1).
while G contains active bidders do

Round the subgraph associated to an interesting node according to its type;
Transform G into a forest with ≤ 1 unsaturated bidder per tree (Lemma 1);

end
allocate each keyword to its unique adjacent bidder in G.

Root each tree ofG at the unsaturated bidder if there is one, or at an arbitrary
bidder if there is not.

Definition 3. Consider a path i1, j1, i2, j2, . . . , ik−1, jk−1, ik consisting of 2k−1
nodes, starting and ending with a bidder, such that

– the k − 1 keywords j1, j2, . . . , jk−1 all have degree exactly 2,
– bidder i1 is the highest node on the path, called “root” of the path,
– for all other bidders i2, i3, . . . , ik, any keyword not on the path that is adjacent

to the bidder has degree exactly 1.

We call the graph formed by this path and all the degree-1 keywords that are
neighbors of i1, i2, . . . , ik a k-chain.

Definition 4. In a tree of G, we say that a node is interesting if it has one of
the following four types.

1. The root of the tree, if the tree consists of a 2-chain (Fig. 2(a)).
2. A bidder v whose subtree contains at least one 3-chain rooted at v (Fig. 2(b)).
3. A bidder v who is the root of more than one 2-chain and who is not the root

of a k-chain, for k > 2 (Fig. 2(c)).
4. A keyword with at least 2 children, such that each child is a root of a 1-chain

or a 2-chain (Fig. 2(d)).

(a)

...

...

(b)

...

(c)

...

...

(d)

Fig. 2. Examples of the four types of interesting nodes with their associated subgraphs,
as defined in Definition 4. For each type, the interesting node is shown with an extra
circle.

Before we describe the rounding subroutines, we establish the correctness of
Algorithm 1.

Lemma 5. A tree that has a keyword of degree more than 1 must have at least
one interesting node.

Proof. In this proof, it will be convenient to work with the trimmed graph G′ of
G, which we define to be the graph obtained from G by removing all keywords
of degree 1. Note that the statement of the lemma applies for G′ if and only if
it applies for G.

Consider a connected component T of G′ that has at least one keyword with
degree at least 2. If there are only two bidders in this component, then it must
be a 2-chain, and hence there is an interesting node of type 1. Suppose now that
there are at least three bidders. If there is a 3-chain, then clearly there is an

interesting node of type 2. So suppose that there are no 3-chains. Let i1 be a
leaf bidder in T ; let j1 be its parent; and let i2 be the parent of j1. Suppose that
j1 has another child besides i1. Then since there are no 3-chains in T , it must
be that j1 is an interesting node of type 4.

Now suppose that j1 has no other child besides i1. Suppose that i2 has
another child besides j1, say j2. Then, since T is in the trimmed graph, j2 must
have another child, say i3. Since T has no 3-chains, i2 must be an interesting
node of type 3.

Finally, suppose that i2 has no other child besides j2. Let the parent of i2 be
j2. The keyword j2 must have another child, since otherwise, its parent would
be the root of a 3-chain. Since no child of j2 can be the root of a 3-chain, the
keyword j2 must be an interesting node of type 4. ut

Hence, in the forest produced by Algorithm 1, every keyword has degree 1, and
the output is an integer allocation.

This lemma, along with the analysis of the rounding subroutines described
below, will give us all of the ingredients we need to prove that Algorithm 1 is a
3/2-approximation.

Proof of Theorem 2. Lemma 5 proves that when Algorithm 1 terminates, it re-
turns a graph in which each keyword has degree 1. Each rounding step described
below clearly takes polynomial time and makes at least one new bidder become
inactive. Hence, the running time of the algorithm is polynomial.

For each rounding, we will associate each unit lost to 1/3 of the weight spent
by a bidder that becomes inactive. Since each bidder becomes inactive only once,
the total weight lost must be no larger than 1/3 of the weight of the optimal
fractional solution. Therefore, the algorithm returns a solution with weight at
least 2/3 of the optimal fractional solution and hence with weight at least two
thirds of the optimal integral solution. ut

2.3 The Rounding Subroutines

To simplify the exposition, we assume, without loss of generality, that all of the
bids and budgets have been scaled so that the maximum bid is 1 (and hence the
minimum budget is at least 1).

Type 1 Rounding

Rounding. Let i be the interesting node, j be its child of degree 2, and k be its
grandchild. By Lemma 1, bidder k is saturated, while bidder i may have some
unused budget s ≥ 0.

Consider two ways to round the 2-chain rooted at i. In the first way, we
remove the edge {i, j}. In the second way, we remove the edge {k, j} and transfer
as much as possible of the removed weight to the edge {i, j} while maintaining
feasibility. Of those two ways, we choose the one that incurs the smaller loss in
the objective function.

Analysis. Since this rounding makes both i and k inactive, we can charge their
total value, which is at least max(1, 2 − s). The following lemma states the
performance of this rounding.

Lemma 6. Let L be the total weight lost by the rounding. Then L ≤ 1
4 max(1,

2− s).

Proof. Let γ = bij/bkj , a = bkjxij and b = bkjxkj . Then wij = aγ and wkj = b.
We have a + b = (xij + xkj)bkj ≤ 1 and (a + b)γ = (xij + xkj)bij ≤ 1. In the
first way of rounding, we lose aγ. In the second way, if the the entire fraction of
j previously allocated to k can be allocated to i, wij will increase by xkjbij =
(b/bkj)bij = bγ. So, we can transfer at least min(s, bγ), and the loss of this way
is b−min(s, bγ). Hence, L = min(b−min(s, bγ), aγ).

Consider the following two cases:

1. Case bγ ≤ s. If γ > 1, then the rounding actually increases the total weight,
so assume that γ ≤ 1. We have L = min(b−bγ, aγ) ≤ min(b−bγ, γ−bγ), and
since b and γ are symmetric in this expression, we can assume that b ≤ γ.
Thus,

 L ≤ b− bγ ≤ b− b2 ≤ 1
4
≤ 1

4
max(1, 2− s) .

2. Case bγ > s. Then s < 1. We claim that aγ ≤ 1− b. This follows because if
γ ≥ 1, then aγ ≤ 1− bγ ≤ 1− b and otherwise, aγ < a ≤ 1− b. Thus,

L

max(1, 2− s)
≤ min(b− s, 1− b)

2− s
≤ 1− s

4− 2s
=

1
2
− 1

4− 2s
≤ 1

4
.

ut

Type 2 and Type 3 Roundings

Rounding. In type 2 rounding, we have a path with two keywords of degree
2; we consider all four possible ways of allocating each of those two keywords
integrally to one of its two neighbors, transferring as much weight as possible in
each allocation while respecting the LP constraints.

In type 3 rounding, we take a partial subtree rooted at the interesting node
consisting of two of the paths below it. Together, these two paths define a path
with two keywords of degree 2. We then proceed as in type 2 to define an integer
allocation of those two keywords.

Analysis. In all cases, two saturated bidders become inactive. We show that the
loss in the objective function is no more than 2/3 (Lemma 7), and charge it to
the total value of the two bidders that become inactive, which is at least 2.

More precisely, consider a path i1, j1, i2, j2, i3 where j1 and j2 are keywords.
We show four ways to round this path so that one of the edges {i1, j1}, {i2, j1}
and one of the edges {i2, j2}, {i3, j2} is removed in a way that loses no more
than 2/3 (Lemma 7). If this path is a 3-chain rooted at i1, then this procedure
makes i2 and i3 inactive. Hence, we can charge the loss to the total value of i2

and i3, which is at least 2. On the other hand, if i2 is the highest node on this
path, j1 and j2 are degree-2 keywords and i1 and i3 do not have any degree-2
children, then this procedure makes i1 and i3 inactive. Hence, we can charge the
loss to the total value of i1 and i3, which is at least 2.

Let γ = bi2j1/bi1j1 , β = bi2j2/bi3j2 , a = xi1j1bi1j1 , b = xi2j1bi1j1 , c = xi2j2bi3j2

and d = xi3j2bi3j2 . Then wi1j1 = a, wi2j1 = bγ, wi2j2 = cβ and wi3j2 = d. This
situation is illustrated in Fig. 3(a).

We consider four ways to round the path, illustrated in Figs. 3(b)-3(e). In
the first way (Fig. 3(b)), we remove the edges {i1, j1} and {i3, j2}, losing a+ d.
In the second way (Fig. 3(c)), we remove the edges {i2, j1} and {i2, j2}, losing
bγ + cβ. In the third way (Fig. 3(d)), we remove the edges {i1, j1} and {i2, j2}
and move part of the removed weight to {i2, j1}. If the entire amount of j1 that
was previously allocated to i1 were allocated to i2, then wi2j1 would increase by
xi1j1bi2j1 = (a/bi1j1)bi2j1 = aγ. The budget freed up at i2 from the removal of
edge {i2, j2} is cβ. Thus, wi2j1 can be increased to at least bγ + min(aγ, cβ),
causing a loss of a+ cβ −min(aγ, cβ) = a+ max(0, cβ − aγ). In the fourth way
(Fig. 3(e)), we remove the edges {i2, j1} and {i3, j2} and transfer as much as
possible of the removed weight to {i2, j2}, causing a loss of d+ max(0, bγ − dβ).

a

bγ

d

cβ

i1

j1

i2

j2

i3

(a)

bγ

cβ

i1

j1

i2

j2

i3

(b)

a

d

i1

j1

i2

j2

i3

(c)

bγ +
min(aγ,cβ)

d

i1

j1

i2

j2

i3

(d)

cβ +
min(bγ,dβ)

a

i1

j1

i2

j2

i3

(e)

Fig. 3. A path with three bidders (a) and four ways to round that path (b)-(e).

Again, we choose the way that incurs the smallest loss. The following lemma
states that this loss is never greater than 2/3.

Lemma 7. Let

L = min (a+ d, bγ + cβ, a+ max(0, cβ − aγ), d+ max(0, bγ − dβ)) .

Then L ≤ 2
3 .

Proof. Since L does not decrease when b and c increase, we can assume that
(a+ b) max(1, γ) = 1 and (c+ d) max(1, β) = 1. We also observe that for β > 1,
L is smaller than

L′ = min(dβ + max(0, bγ − dβ), a+ max(0, cβ − aγ), bγ + cβ, a+ dβ)
= min(d′ + max(0, bγ − d′), a+ max(0, c′ − aγ), bγ + c′, a+ d′) ,

where d′ = dβ, c′ = cβ with the condition c′+ d′ ≤ 1, i.e. L′ is exactly the same
as L with β = 1. Hence, we can assume that β ≤ 1. Similarly we can assume
that γ ≤ 1.

With these assumptions, we have a + b = 1 and c + d = 1. Thus, we can
replace b by 1 − a and c by 1 − d. We now need to bound the value of the
following optimization problem:

maxL s.t.

0 ≤ a, d ≤ 1
L ≤ d+ max(0, γ − aγ − dβ) = E1

L ≤ a+ max(0, β − dβ − aγ) = E2

L ≤ γ + β − aγ − dβ = E3

L ≤ a+ d = E4

,

where γ, β ≤ 1 are parameters.

The rest of the proof is a case-by-case analysis. Let A = max(0, γ− aγ− dβ)
and B = max(0, β − dβ − aγ). For each possibility for the values of A and B
(expressed by a linear inequality), we have a linear program over 3 variables,
hence at least three constraints are tight at the optimum.

We proceed with a case analysis. First, consider the cases where one of the
first four constraints is tight.

1. Case a = 0. Then

L = min(d+ max(0, γ − dβ),max(0, β − dβ), β + γ − dβ, d)
= min(max(0, β − dβ), d) ≤ min(1− d, d) ≤ 1/2.

2. Case d = 0. Symmetric.
3. Case a = 1. Then

L = min(d, 1 + max(0, β − dβ − γ), β − dβ, 1 + d) ≤ min(1− d, d) ≤ 1/2.

4. Case d = 1. Symmetric.

Next, consider the case where the first four constraints are not tight. Then, at
least three of the four expressions Ei’s are equal to L. Without loss of generality,
assume that γ ≤ β. Since it is easy to check that E1 + E2 ≤ E3 + E4, it must
be that L = E1 = E2 and there are only two more cases.

1. Case L = E1 = E2 = E4. Since E1 = E4, A is positive, and so γ − aγ−dβ =
a. Similarly, since E2 = E4, B is positive, so we have β − dβ−aγ = d. Solving

for a and d yields a = (γ−β2+γβ)/(1+γ+β) and d = (β−γ2+γβ)/(1+γ+β).
Substituting the values of a and d into L = E4 and using β, γ ≤ 1 yields

L =
γ + β − γ2 − β2 + 2γβ

1 + γ + β
≤ γ + β

1 + γ + β
≤ 2

3
.

2. Case L = E1 = E2 = E3. We consider three sub-cases according to the values
A and B.
– If both A and B are positive then E1 = E3 yields d = β, E2 = E3 yields
a = γ, so we can replace a and d by their values and optimize over β
and γ to get

L = E3 = β(1− β) + γ(1− γ) ≤ 1/4 + 1/4 = 1/2 .

– If both A and B are 0 then E1 = E2 yields a = d. We replace d by a in
E1 = E3 to solve for a and use β, γ ≤ 1 to obtain

L = a =
γ + β

1 + γ + β
≤ 2/3 .

– Finally, if only B is positive (since γ ≤ β) then E2 = E3 yields a = γ.
We replace a by its value in E1 = E3 and solve for d, then optimize over
γ and β to get

L = d =
β + γ − γ2

1 + β
≤ β + 1/4

1 + β
≤ 5/4

2
= 5/8 .

Putting all the cases together gives L ≤ max(1/2, 2/3, 5/8) = 2/3. ut

Type 4 Rounding

Let v be the interesting node of type 4, and let u be its parent. Let h and k
be the number of 1-chains and 2-chains rooted at children of v, respectively. We
consider three cases based on the value of h and k.

Case 1: there are no 2-chains attached to v (k = 0). Then h > 1.

Rounding. Among the edges adjacent to v, retain the edge of largest weight and
delete all others.

Analysis. We lose at most h/(h + 1) and make at least h saturated bidders
inactive. Therefore, we can charge the loss to these nodes.

Case 2: there are no 1-chains attached to v (h = 0). Then k > 1. Let p1, p2, . . . pk

be v’s children.

Rounding. We first round the path consisting of the edges {u, v}, {v, p1} and the
2-chain rooted at p1, losing at most 2/3 by Lemma 7. After this step, either p1

or u is disconnected from v. We repeat the above step with the path containing
the edge joining v and the other node (either u or p1), {v, p2} and the 2-chain
rooted at p2. We repeat this k times.

Analysis. We lose at most 2k/3 and make 2k saturated bidders inactive: p1, p2, . . . pk

and their grandchildren. Hence, we can charge the loss to these nodes.

Case 3: h > 0 and k > 0.

Rounding. We choose one 1-chain rooted at, say, q, and one 2-chain rooted at,
say, p and round the path containing q, v, p and the 2-chain rooted at p.

Analysis. We lose at most 2/3 by Lemma 7 and make two saturated bidders
inactive: p’s grandchild and either q or p. Hence, we can charge the loss to these
nodes.

3 A
√

2-Approximation Algorithm for the Uniform
Problem

In this section, we provide an algorithm that improves the approximation ratio
to
√

2 for the uniform case of the problem. The main observation that leads to
this improvement is that in the proof of Theorem 2, there was some weight that
we could have charged to but that we did not use. For example, consider the
type 2 rounding shown in Figure 3(b). We charged the loss of the rounding to the
weight allocated to bidders i2 and i3, which must be at least 2 since these bidders
are saturated. We can do better than this, however. In the rounding, a weight of
a is deallocated from i1. Because we rebalance according to Lemma 1 between
every rounding, this is weight that will never be charged to again. Therefore,
instead of charging to 2, we can actually charge to 2 + a.

To make this more precise, we define an active edge to be an edge that is
adjacent to an active bidder. During each rounding, the sum of the weights on
active edges will decrease, both from active edges becoming inactive and from
active edges being deleted or losing weight. Define the accountable amount of
a rounding to be the amount by which this quantity decreases. We will show
that the loss of each rounding can be charged to (1− 1/

√
2) of the accountable

amount of that rounding. Since each unit of accountable amount is charged at
most once, this suffices to prove the approximation ratio.

The structure of Algorithm 2, our
√

2-approximation, is the same as that
of Algorithm 1. The only difference is in the rounding subroutines and their
analysis. Instead of choosing the rounding that minimizes the loss at each step,
we choose the one that minimizes the ratio between the loss and the accountable
amount. In the remainder of this section we prove the following.

Theorem 8. Algorithm 2 is a polynomial-time
√

2-approximation for the uni-
form version of the Budgeted Allocation problem.

Proof. As in Theorem 2, the algorithm terminates in polynomial time and out-
puts an integral solution. For each rounding subroutine, we show that we can
charge the loss to 1− 1/

√
2 of the accountable amount. This implies that Algo-

rithm 2 returns a solution of value at least 1/
√

2 of optimal. ut

We believe that Theorem 8 applies to the non-uniform version of the problem,
but we have not been able to prove this, since it seems to involve calculations
that are significantly more complicated than those in the proof of Lemma 7.

3.1 The Rounding Subroutines

For convenience, we define x to be 2 −
√

2. For each rounding subroutine, we
show that the ratio of the loss to the accountable amount is no greater than
x/2 = 1− 1/

√
2.

Type 1 Rounding

The rounding and analysis for type 1 is the same as for Algorithm 1. By Lemma 6,
the ratio of the loss to the accountable amount is no greater than 1/4 < x/2.

Type 2 Rounding

Rounding. Let i1 be the interesting node and i1, j1, i2, j2, i3 be the 3-chain as-
sociated with i1, and let a = wi1j1 , b = wi2j1 , c = wi2j2 and d = wi3j2 . Of the
four ways to round this chain described in Fig. 3, we choose the rounding that
minimizes the ratio of the loss over the accountable amount.

Analysis. The four ways to round the chain incur losses of a+d, b+c, max(a, c),
and max(b, d), respectively. (Recall that in the uniform version β = γ = 1.) To
derive the accountable amounts of the roundings, note that the first rounding
makes i2 and i3 inactive, and thus makes all edges adjacent to these nodes
inactive; the sum of these edges is at least 2, since these bidders are saturated.
Furthermore, it also removes the active edge {i1, j1}. Thus, the accountable
amount of the first rounding is 2 + a. Similarly, the accountable amount of the
second, third and fourth roundings are 2, 2 + a and 2, respectively. Hence, the
following lemma shows that the we can always choose a rounding such that the
ratio of the loss to the accountable amount is no greater than x/2.

Lemma 9. Let

R = min
(
a+ d

2 + a
,
b+ c

2
,

max(a, c)
2 + a

,
max(b, d)

2

)
.

Then R ≤ x/2.

Proof. The lemma is trivial if max(a, c) ≤ x or max(b, d) ≤ x. Thus, assume
that max(a, c) > x and max(b, d) > x. Consider two cases:

1. Case b ≤ d. Then d > x, and hence c < 1−x, a > x, and b < 1−x. We have

R ≤ min
(

a

2 + a
,

min(b+ 1− d, d)
2

)
≤ min

(
a

2 + a
,
b+ 1

4

)
≤ min

(
a

2 + a
,

2− a
4

)
.

Since a/(2 + a) is increasing and (2− a)/4 is decreasing, the last expression
gets its maximum when a/(2 + a) = (2− a)/4, i.e. when a = 2

√
2 − 2. In

that case, R = x/2.
2. Case b > d. Then b > x, and hence a < 1−x, c > x, and d < 1−x. Therefore

R ≤ min (c, a+ d)
2 + a

≤ min (1− d, a+ d)
2 + a

≤ 1 + a

4 + 2a
≤ 2− x

6− 2x
=
x

2
.

The third inequality follows since (1 + a)/(4 + 2a) is increasing and a < 1−x.
ut

Type 3 Rounding

Rounding. Let the interesting node be i2; let j1 and j2 be two of its degree-
2 children; and let i1, i3 be j1’s and j2’s children, respectively. Let a = wi1j1 ,
b = wi2j1 , c = wi2j2 and d = wi3j2 . As in the previous section, there are four ways
to round this path. We choose the rounding that minimizes the ratio between
the loss and the accountable amount.

Analysis. The four ways to round this path incur losses of a+ d, b+ c,max(a, c)
and max(b, d), respectively. The first rounding makes both i1 and i3 inactive, and
thus has accountable amount at least 2. The second rounding makes, in addition
to i1 and i3, the edges {i2, j1} and {i2, j2} inactive, and thus has an accountable
amount of at least 2 + b + c. The third rounding makes i1 and i3 inactive. In
addition, it makes {i2, j2} inactive and increases the weight of the active edge
{i2, j1} by min(a, c). If c > a, this causes a loss of c− a on the two active edges
{i2, j1} and {i2, j2}. Thus, the accountable amount of this rounding is at least
2 + max(c − a, 0). Similarly, the accountable amount of the last rounding is at
least 2 + max(b − d, 0). Hence, the following lemma shows that we can always
choose a rounding such that the ratio of the loss to the accountable amount is
no greater than x/2.

Lemma 10. Let

R = min
(

b+ c

2 + b+ c
,
a+ d

2
,

max(b, d)
2 + max(b− d, 0)

,
max(a, c)

2 + max(c− a, 0)

)
.

Then R ≤ x
2 .

Proof. The lemma is trivial if max(a, c) ≤ x or max(b, d) ≤ x. Thus, we assume
that max(a, c) > x and max(b, d) > x. Consider two cases:

1. Case b ≤ d. Then d > x, c < 1− x, a > x, and b < 1− x. Thus

R = min
(

b+ c

2 + b+ c
,
a+ d

2
,
d

2
,
a

2

)
≤ min

(
b+ c

2 + b+ c
,
a+ d

4

)
≤ min

(
b+ c

2 + b+ c
,

2− b− c
4

)
.

As in the proof of Lemma 9, this function achieves its maximum when b+c =
2
√

2− 2, in which case the ratio is x/2.
2. Case b > d. Then b > x, a < 1 − x, c > x, and d < 1 − x. Considering all

ways to round except the first, we can round at cost

min
(
a+ d

2
,

b

2 + b− d
,

c

2 + c− a

)
≤
(

2− b− c
2

,
b

1 + b+ c
,

c

1 + b+ c

)
≤
(

2− b− c
2

,
b+ c

2 + 2b+ 2c

)
.

Let y = b+ c. Note that (2− y)/2 is decreasing and y/(2 + 2y) is increasing
when y ≥ 0. Therefore, the minimum is achieved when (2−y)/2 = y/(2+2y),
which happens when y =

√
2. In this case, the ratio is x/2.

ut

Type 4 Rounding

Let v be the interesting node of type 4, u be its parent, and h and k be the number
of 1-chains and 2-chains rooted at children of v, respectively. As illustrated in
Fig. 4, let a be the weight of {u, v}, e1, e2, . . . , eh be the weights of the edges
joining v and its children that are roots of the 1-chains, b1, b2, . . . , bk be the
weights of the edges joining v and its children that are roots of the 2-chains,
c1, c2, . . . , ck be the weights of the edges joining these children of v and their
degree-2 children, and d1, d2, . . . , dk be the weights of the edges joining these
degree-2 grandchildren of v to their children. In the following, we will sometimes
use these labels to refer to the edges themselves instead of their weights, but the
meaning should be clear from the context. We consider three cases based on the
values of h and k.

Case 1: there are no 2-chains attached to v (k = 0). Then h > 1.

Rounding. Without loss of generality, assume that e1 ≥ e` for all `. Consider two
ways to round: remove everything but e1 and remove everything but a. Of these,
choose the rounding that minimizes the ratio of the loss over the accountable
amount.

ehe2e1

a

...

...

b1 b2 bk

c1

d1

c2

d2

ck

dk

Fig. 4. An interesting node of type 4 and its associated structure.

Analysis. If the algorithm chooses the first way, the loss is at most δ − e1 ≤
δ−(δ−a)/h, where δ = a+

∑k
`=1 e`. Since δ ≤ 1, the loss is at most 1−(1−a)/h.

The accountable amount is at least h+ a, since the rounding makes all children
of v and the edge a inactive. If the algorithm chooses the second way, the loss is
at most 1 − a and the accountable amount is at least h. Hence, the ratio is no
greater than

min
(

1− (1− a)/h
h+ a

,
1− a
h

)
≤ min

(
1− (1− a)/2

2 + a
,

1− a
2

)
,

where the inequality follows because both functions are decreasing on h. The
expression on the right is maximized when the two operands are equal, which
happens when a =

√
2− 1 = 1− x. Hence, the ratio is no greater than x/2.

Case 2: there are no 1-chains attached to v (h = 0). Then k > 1.

Rounding. Without loss of generality, assume that b1 ≥ b` for all `. We round
based on the following cases.

1. If there exists an ` such that max(b`, d`) ≤ x, we remove b` and d` and
increase c` to c` + min(b`, d`).

2. If there exists an ` such that d` ≤ x/2, we remove d`.
3. Otherwise, we remove a, remove the c`’s, remove all of the b`’s except b1,

and increase b1 by min(c1, δ − b1), where δ =
∑k

`=1 b` + a.

Analysis. The analysis for each case is as follows.

1. We lose max(b`, d`) ≤ x and have an accountable amount of at least 2, since
all of the edges attached to the saturated bidders of the 2-chain are made
inactive. Hence, the ratio of the amount lost to the accountable amount is
at most x/2.

2. We lose at most x/2 when we remove d`, and the accountable amount is at
least 1.

3. The loss of this rounding is L = max(c1, δ− b1) +
∑k

`=2 c`. The accountable
amount is at least 2k + a, since we make 2k bidders inactive and delete the
active edge {u, v}. The following lemma shows that the ratio of the loss over
the accountable amount is no greater than x/2.

Lemma 11. Let R = L/(2k + a). Then R ≤ x/2.

Proof. Suppose first that b1 > x. Then b` < 1 − x for all ` > 1. Since
max(b`, d`) > x, we therefore have that d` > x and hence c` < 1− x for all
` > 1. Since d1 > x/2, we have c1 < 1 − x/2. Therefore, max(c1, δ − b1) ≤
max(c1, 1− b1) < 1− x/2, and

L

2k + a
≤ L

2k
<

1− x/2 + (k − 1)(1− x)
2k

=
x

4k
+

1− x
2
≤ 4− 3x

8
< x/2 .

Now suppose that b1 ≤ x. Then b` ≤ x for all `, and hence d` > x and
c` < 1 − x for all `. If c1 ≥ δ − b1, then L ≤ k(1 − x), and the ratio is no
greater than (1− x)/2 < x/2. If δ − b1 ≥ c1, then

L ≤ δ − b1 +
k∑

`=2

c` ≤ δ − (δ − a)/k +
k∑

`=2

c`

≤ 1− (1− a)/k +
k∑

`=2

c` .

Hence,

R ≤ 1− (1− a)/k + (k − 1)(1− x)
2k + a

=
k − 1 + a+ k(k − 1)(1− x)

k(2k + a)
.

– If k = 2 then R ≤ (3− 2x+ a)/(8 + 2a) ≤ (4− 2x)/10 < x/2.
– If k = 3 then R ≤ (2 + a+ 6(1− x))/(3(6 + a)) ≤ (9− 6x)/21 < x/2.
– If k ≥ 4 then a < xka/2. Since k − 1 + k(k − 1)(1 − x) < xk2, we have
R < x/2.

ut

Case 3: h > 0 and k > 0. Without loss of generality, assume that e1 ≥ e` for
all `.

Rounding. We round based on the following cases.

1. If there exists an ` and m such that max {e`, cm} ≤ x, then remove e` and
cm and increase bm by min {e`, cm}.

2. If there exists an ` such that max {b`, d`} ≤ x, we remove b` and d` and
increase c` by min {b`, d`}.

3. Otherwise, if b1 ≥ d1, then remove all edges incident to the interesting node
except b1, and all of the d`’s.

4. Otherwise, remove all edges incident to v except e1, and all of the c`’s.

Analysis. The analysis for each case is as follows.

1. The loss is at most x, and the accountable amount is at least 2.
2. Again, the loss is at most x, and the accountable amount is at least 2.
3. Since b1 ≥ d1, we have b1 > x, and hence e` < 1 − x for all `. This implies

that c` > x, and hence d` < 1− x for all `. Hence, the loss is at most

1− b1 +
k∑

`=1

d` ≤ 1− x+
k∑

`=1

d` ≤ (k + 1)(1− x) ,

and the accountable amount is at least 2k + h. Hence, the ratio is at most

(k + 1)(1− x)
2k + h

≤ 2
3

(1− x) <
x

2
.

4. Since b1 < d1, we have d1 > x, and hence c1 < 1 − x. Therefore, e` > x
for all `, and since x > 1/2, this implies that in fact h = 1. It also implies
that b` < 1− x, d` > x, and c` < 1− x for all `. Therefore, the loss is again
at most (k + 1)(1 − x), and the accountable amount is at least 2k + 1. As
before, the ratio is thus at most x/2.

4 APX-hardness

In this section, we show that the Budgeted Allocation problem is APX-hard,
which implies that there is no PTAS for the problem unless P = NP . Our proof
uses a reduction from Three Dimensional Matching and the following known
result.

Theorem 12 ([19]). There exists a constant c1 > 0 such that given an instance
of maximum 3D-matching in which each element appears in no more than k
triples, for some constant k, it is NP-hard to determine whether the maximum
matching has size n or size less than (1− c1)n.

Theorem 13. Budgeted Allocation is APX-hard, even in the uniform version.

Proof. We give the following reduction from 3D-matching to Budgeted Alloca-
tion. Given an instance (U, V,W,E) of 3D-matching, where U, V,W are sets of
vertices such that |U | = |V | = |W | = n and |E| ⊆ U × V × W such that
|E| = m ≤ kn, we construct an instance of Budgeted Allocation as follows.
First, we create 3n keywords corresponding to 3n vertices and m bidders corre-
sponding to m triplets. Bidder i makes a bid of 1 for one of these keywords j if
and only if i represents some triplet that contains the vertex represented by j.
Next, we create m − n new keywords and let every bidder make a bid of 3 for
each of these keywords. We set the budget of each bidder to 3.

First, it is clear that if the 3D-matching instance has a matching of size x,
then the instance of Budgeted Allocation has a solution of value 3x+ 3(m− n).
On the other hand, if the Budgeted Allocation instance has a solution of value

3m − z, then there exist at most z bidders whose budgets are not exhausted.
Therefore, the 3D-matching instance has a matching of size at least n− z.

Now, consider two instances T1 and T2 of 3D-matching where T1 has a match-
ing of size n and T2’s maximum matching has size n − c1n. Let A1 and A2 be
the corresponding instances of Budgeted Allocation. Then A2 does not have a
solution of value larger than 3m − c1n. Therefore, if we have an approxima-
tion algorithm which outputs a solution of value larger than 3m − c1n for A1

then we can distinguish between T1 and T2. Let c2 be some constant such that
c2 < c1/3k. Then 3m(1 − c2) > 3m − c1n, and thus Budgeted Allocation is
NP-hard to approximate within (1− c2). ut

References

1. Andelman, N., Mansour, Y.: Auctions with budget constraints. In: SWAT 2004
(LNCS 3111), Springer 26–38

2. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: FOCS 2006. 667–676

3. Lahaie, S., Pennock, D., Saberi, A., Vohra, R.: Sponsored search auctions. In
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V., eds.: Algorithmic Game
Theory. Cambridge University Press (2007) 699–716

4. Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: ESA 2007 (LNCS 4698), Springer 253–264

5. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA 2008. 982–991

6. Mahdian, M., Nazerzadeh, H., Saberi, A.: Allocating online advertisement space
with unreliable estimates. In: EC 2007. 288–294

7. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM 54(5) (2007) 22

8. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior 55(2) (2006) 270–296

9. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and im-
proved lower bounds for submodular welfare maximization and GAP. Manuscript
(2008)

10. Srinivasan, A.: Budgeted allocations in the full-information setting. Manuscript
(2008)

11. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combina-
torial auctions with submodular bidders. In: SODA 2006. 1064–1073

12. Khot, S., Lipton, R., Markakis, E., Mehta, A.: Inapproximability results for combi-
natorial auctions with submodular utility functions. In: WINE 2005 (LNCS 3828).
92–101

13. Mirrokni, V., Schapira, M., Vondrak, J.: Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions. Manuscript (2007)

14. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: STOC 2008 (to appear). (2008)

15. Fleischer, L., Goemans, M., Mirrokni, V., Sviridenko, M.: Tight approximation
algorithms for maximum general assignment problems. In: SODA 2006. 611–620

16. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: SODA
2000. 213–222

17. Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming 62 (1993) 461–474

18. Andelman, N.: Online and strategic aspects of network resource management
algorithms. PhD thesis, Tel Aviv University (2006)

19. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete.
Inform. Process. Lett. 37 27–35

